Refinamento multinível em redes complexas baseado em similaridade de vizinhança

Detalhes bibliográficos
Autor(a) principal: Valejo, Alan Demetrius Baria
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14042015-142526/
Resumo: No contexto de Redes Complexas, particularmente das redes sociais, grupos de objetos densamente conectados entre si, esparsamente conectados a outros grupos, são denominados de comunidades. Detecção dessas comunidades tornou-se um campo de crescente interesse científico e possui inúmeras aplicações práticas. Nesse contexto, surgiram várias pesquisas sobre estratégias multinível para particionar redes com elevada quantidade de vértices e arestas. O objetivo dessas estratégias é diminuir o custo do algoritmo de particionamento aplicando-o sobre uma versão reduzida da rede original. Uma possibilidade dessa estratégia, ainda pouco explorada, é utilizar heurísticas de refinamento local para melhorar a solução final. A maioria das abordagens de refinamento exploram propriedades gerais de redes complexas, tais como corte mínimo ou modularidade, porém, não exploram propriedades inerentes de domínios específicos. Por exemplo, redes sociais são caracterizadas por elevado coeficiente de agrupamento e assortatividade significativa, consequentemente, maximizar tais características pode conduzir a uma boa solução e uma estrutura de comunidades bem definida. Motivado por essa lacuna, neste trabalho é proposto um novo algoritmo de refinamento, denominado RSim, que explora características de alto grau de transitividade e assortatividade presente em algumas redes reais, em particular em redes sociais. Para isso, adotou-se medidas de similaridade híbridas entre pares de vértices, que utilizam os conceitos de vizinhança e informações de comunidades para interpretar a semelhança entre pares de vértices. Uma análise comparativa e sistemática demonstrou que o RSim supera os algoritmos de refinamento habituais em redes com alto coeficiente de agrupamento e assortatividade. Além disso, avaliou-se o RSim em uma aplicação real. Nesse cenário, o RSim supera todos os métodos avaliado quanto a eficiência e eficácia, considerando todos os conjuntos de dados selecionados.
id USP_2c6c28ceae49a9ad8a35970e28d110e3
oai_identifier_str oai:teses.usp.br:tde-14042015-142526
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Refinamento multinível em redes complexas baseado em similaridade de vizinhançaMultilevel refinement in complex networks based on neighborhood similarityComplex networksDetecção de comunidadesGraph clusteringMultilevel partitioningParticionamento multinívelRedes complexasRedes sociaisRefinamento multinívelRefinementSocial networksNo contexto de Redes Complexas, particularmente das redes sociais, grupos de objetos densamente conectados entre si, esparsamente conectados a outros grupos, são denominados de comunidades. Detecção dessas comunidades tornou-se um campo de crescente interesse científico e possui inúmeras aplicações práticas. Nesse contexto, surgiram várias pesquisas sobre estratégias multinível para particionar redes com elevada quantidade de vértices e arestas. O objetivo dessas estratégias é diminuir o custo do algoritmo de particionamento aplicando-o sobre uma versão reduzida da rede original. Uma possibilidade dessa estratégia, ainda pouco explorada, é utilizar heurísticas de refinamento local para melhorar a solução final. A maioria das abordagens de refinamento exploram propriedades gerais de redes complexas, tais como corte mínimo ou modularidade, porém, não exploram propriedades inerentes de domínios específicos. Por exemplo, redes sociais são caracterizadas por elevado coeficiente de agrupamento e assortatividade significativa, consequentemente, maximizar tais características pode conduzir a uma boa solução e uma estrutura de comunidades bem definida. Motivado por essa lacuna, neste trabalho é proposto um novo algoritmo de refinamento, denominado RSim, que explora características de alto grau de transitividade e assortatividade presente em algumas redes reais, em particular em redes sociais. Para isso, adotou-se medidas de similaridade híbridas entre pares de vértices, que utilizam os conceitos de vizinhança e informações de comunidades para interpretar a semelhança entre pares de vértices. Uma análise comparativa e sistemática demonstrou que o RSim supera os algoritmos de refinamento habituais em redes com alto coeficiente de agrupamento e assortatividade. Além disso, avaliou-se o RSim em uma aplicação real. Nesse cenário, o RSim supera todos os métodos avaliado quanto a eficiência e eficácia, considerando todos os conjuntos de dados selecionados.In the context of complex networks, particularly social networks, groups of densely interconnected objects, sparsely linked to other groups are called communities. Detection of these communities has become a field of increasing scientific interest and has numerous practical applications. In this context, several studies have emerged on multilevel strategies for partitioning networks with high amount of vertices and edges. The goal of these strategies is to reduce the cost of partitioning algorithm by applying it on a reduced version of the original network. The possibility for this strategy, yet little explored, is to apply local refinement heuristics to improve the final solution. Most refinement approaches explore general properties of complex networks, such as minimum cut or modularity, however, do not exploit inherent properties of specific domains. For example, social networks are characterized by high clustering coefficient and significant assortativity, hence maximize such characteristics may lead to a good solution and a well-defined community structure. Motivated by this gap, in this thesis, we propose a new refinement algorithm, called RSim, which exploits characteristics of high degree of transitivity and assortativity present in some real networks, particularly social networks. For this, we adopted hybrid similarity measures between pairs of vertices, using the concepts of neighborhood and community information to interpret the similarity between pairs of vertices. A systematic and comparative analysis showed that the RSim statistically outperforms usual refinement algorithms in networks with high clustering coefficient and assortativity. In addition, we assessed the RSim in a real application. In this scenario, the RSim surpasses all evaluated methods in efficiency and effectiveness, considering all the selected data sets.Biblioteca Digitais de Teses e Dissertações da USPLopes, Alneu de AndradeValejo, Alan Demetrius Baria2014-11-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-14042015-142526/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-14042015-142526Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Refinamento multinível em redes complexas baseado em similaridade de vizinhança
Multilevel refinement in complex networks based on neighborhood similarity
title Refinamento multinível em redes complexas baseado em similaridade de vizinhança
spellingShingle Refinamento multinível em redes complexas baseado em similaridade de vizinhança
Valejo, Alan Demetrius Baria
Complex networks
Detecção de comunidades
Graph clustering
Multilevel partitioning
Particionamento multinível
Redes complexas
Redes sociais
Refinamento multinível
Refinement
Social networks
title_short Refinamento multinível em redes complexas baseado em similaridade de vizinhança
title_full Refinamento multinível em redes complexas baseado em similaridade de vizinhança
title_fullStr Refinamento multinível em redes complexas baseado em similaridade de vizinhança
title_full_unstemmed Refinamento multinível em redes complexas baseado em similaridade de vizinhança
title_sort Refinamento multinível em redes complexas baseado em similaridade de vizinhança
author Valejo, Alan Demetrius Baria
author_facet Valejo, Alan Demetrius Baria
author_role author
dc.contributor.none.fl_str_mv Lopes, Alneu de Andrade
dc.contributor.author.fl_str_mv Valejo, Alan Demetrius Baria
dc.subject.por.fl_str_mv Complex networks
Detecção de comunidades
Graph clustering
Multilevel partitioning
Particionamento multinível
Redes complexas
Redes sociais
Refinamento multinível
Refinement
Social networks
topic Complex networks
Detecção de comunidades
Graph clustering
Multilevel partitioning
Particionamento multinível
Redes complexas
Redes sociais
Refinamento multinível
Refinement
Social networks
description No contexto de Redes Complexas, particularmente das redes sociais, grupos de objetos densamente conectados entre si, esparsamente conectados a outros grupos, são denominados de comunidades. Detecção dessas comunidades tornou-se um campo de crescente interesse científico e possui inúmeras aplicações práticas. Nesse contexto, surgiram várias pesquisas sobre estratégias multinível para particionar redes com elevada quantidade de vértices e arestas. O objetivo dessas estratégias é diminuir o custo do algoritmo de particionamento aplicando-o sobre uma versão reduzida da rede original. Uma possibilidade dessa estratégia, ainda pouco explorada, é utilizar heurísticas de refinamento local para melhorar a solução final. A maioria das abordagens de refinamento exploram propriedades gerais de redes complexas, tais como corte mínimo ou modularidade, porém, não exploram propriedades inerentes de domínios específicos. Por exemplo, redes sociais são caracterizadas por elevado coeficiente de agrupamento e assortatividade significativa, consequentemente, maximizar tais características pode conduzir a uma boa solução e uma estrutura de comunidades bem definida. Motivado por essa lacuna, neste trabalho é proposto um novo algoritmo de refinamento, denominado RSim, que explora características de alto grau de transitividade e assortatividade presente em algumas redes reais, em particular em redes sociais. Para isso, adotou-se medidas de similaridade híbridas entre pares de vértices, que utilizam os conceitos de vizinhança e informações de comunidades para interpretar a semelhança entre pares de vértices. Uma análise comparativa e sistemática demonstrou que o RSim supera os algoritmos de refinamento habituais em redes com alto coeficiente de agrupamento e assortatividade. Além disso, avaliou-se o RSim em uma aplicação real. Nesse cenário, o RSim supera todos os métodos avaliado quanto a eficiência e eficácia, considerando todos os conjuntos de dados selecionados.
publishDate 2014
dc.date.none.fl_str_mv 2014-11-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14042015-142526/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14042015-142526/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256961430585344