Extração de parâmetros característicos para detecção acústica de vazamento de água.

Detalhes bibliográficos
Autor(a) principal: Borges, Liselene de Abreu
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-19072011-110149/
Resumo: Este trabalho apresenta a pesquisa sobre a extração de parâmetros característicos de sinais acústicos para fins de detecção automática de vazamento de água em tubulações enterradas. Os sinais acústicos foram adquiridos com o auxílio de um geofone eletrônico e também catalogados por técnicos especialistas em detecção acústica. De todos os sinais foram extraídos os modelos de predição linear perceptual de várias ordens, determinando-se como melhor a ordem 2. A partir de um conjunto de modelos de referência de sinais de vazamento, a distância média de Itakura dos outros modelos em relação a estas referências foram calculadas. Em conjunto com estas distâncias, quatro características espectrais são também extraídas do sinal a fim de compor o vetor de parâmetros característicos do sinal. Parte destes vetores de parâmetros característicos são utilizados para treinar o classificador de máquina de vetores de suporte. O restante dos dados são, então, submetidos a este classificador que obteve a taxa de acerto de classificação em torno de 93%. Experimentos anteriores, utilizando modelos de predição linear, de ordem 10, obtiveram uma taxa de acerto em torno de 82%. Isso demonstra que estes novos parâmetros característicos propostos alcançam os objetivos deste trabalho, que são algoritmos com melhor taxa de acerto na detecção de vazamentos.
id USP_2d1adf79fecfec3a3f16be1afc0a9372
oai_identifier_str oai:teses.usp.br:tde-19072011-110149
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Extração de parâmetros característicos para detecção acústica de vazamento de água.Feature extraction for acoustic water leak detection.Linear predictionMáquina de vetores de suportePredição linearProcessamento de sinaisSignal processingSupport vector machineVazamento de águaWater leakEste trabalho apresenta a pesquisa sobre a extração de parâmetros característicos de sinais acústicos para fins de detecção automática de vazamento de água em tubulações enterradas. Os sinais acústicos foram adquiridos com o auxílio de um geofone eletrônico e também catalogados por técnicos especialistas em detecção acústica. De todos os sinais foram extraídos os modelos de predição linear perceptual de várias ordens, determinando-se como melhor a ordem 2. A partir de um conjunto de modelos de referência de sinais de vazamento, a distância média de Itakura dos outros modelos em relação a estas referências foram calculadas. Em conjunto com estas distâncias, quatro características espectrais são também extraídas do sinal a fim de compor o vetor de parâmetros característicos do sinal. Parte destes vetores de parâmetros característicos são utilizados para treinar o classificador de máquina de vetores de suporte. O restante dos dados são, então, submetidos a este classificador que obteve a taxa de acerto de classificação em torno de 93%. Experimentos anteriores, utilizando modelos de predição linear, de ordem 10, obtiveram uma taxa de acerto em torno de 82%. Isso demonstra que estes novos parâmetros característicos propostos alcançam os objetivos deste trabalho, que são algoritmos com melhor taxa de acerto na detecção de vazamentos.This work presents a research about feature extraction of acoustic signals for detection of water leak in buried pipes. Acoustic signals were acquired by means of an electronic geophone and also labeled by technicians specialized in acoustic water leak detection. For every signals, its linear predictive model was estimated for a range of prediction orders, concluding for the best order 2. Out of this group of models, some leaky ones are used as reference for calculating the Itakura mean distance with respect to the other models. Completing this measure, four spectral features are extracted to compose the signal feature vector. Some of these vectors were used to train a support vector machine to be used as a classifier. The remaining ones were used to evaluate the classification. The resulting accuracy rate achieved is around 93%. Earlier experiments, which use linear prediction of order 10 had an accuracy rate around 82%. This shows that this novel proposal of feature vector achieves the main goal of this research, which is the increase in the leak detection accuracy rate.Biblioteca Digitais de Teses e Dissertações da USPArjona Ramírez, Miguel Borges, Liselene de Abreu2011-04-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-19072011-110149/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-19072011-110149Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Extração de parâmetros característicos para detecção acústica de vazamento de água.
Feature extraction for acoustic water leak detection.
title Extração de parâmetros característicos para detecção acústica de vazamento de água.
spellingShingle Extração de parâmetros característicos para detecção acústica de vazamento de água.
Borges, Liselene de Abreu
Linear prediction
Máquina de vetores de suporte
Predição linear
Processamento de sinais
Signal processing
Support vector machine
Vazamento de água
Water leak
title_short Extração de parâmetros característicos para detecção acústica de vazamento de água.
title_full Extração de parâmetros característicos para detecção acústica de vazamento de água.
title_fullStr Extração de parâmetros característicos para detecção acústica de vazamento de água.
title_full_unstemmed Extração de parâmetros característicos para detecção acústica de vazamento de água.
title_sort Extração de parâmetros característicos para detecção acústica de vazamento de água.
author Borges, Liselene de Abreu
author_facet Borges, Liselene de Abreu
author_role author
dc.contributor.none.fl_str_mv Arjona Ramírez, Miguel
dc.contributor.author.fl_str_mv Borges, Liselene de Abreu
dc.subject.por.fl_str_mv Linear prediction
Máquina de vetores de suporte
Predição linear
Processamento de sinais
Signal processing
Support vector machine
Vazamento de água
Water leak
topic Linear prediction
Máquina de vetores de suporte
Predição linear
Processamento de sinais
Signal processing
Support vector machine
Vazamento de água
Water leak
description Este trabalho apresenta a pesquisa sobre a extração de parâmetros característicos de sinais acústicos para fins de detecção automática de vazamento de água em tubulações enterradas. Os sinais acústicos foram adquiridos com o auxílio de um geofone eletrônico e também catalogados por técnicos especialistas em detecção acústica. De todos os sinais foram extraídos os modelos de predição linear perceptual de várias ordens, determinando-se como melhor a ordem 2. A partir de um conjunto de modelos de referência de sinais de vazamento, a distância média de Itakura dos outros modelos em relação a estas referências foram calculadas. Em conjunto com estas distâncias, quatro características espectrais são também extraídas do sinal a fim de compor o vetor de parâmetros característicos do sinal. Parte destes vetores de parâmetros característicos são utilizados para treinar o classificador de máquina de vetores de suporte. O restante dos dados são, então, submetidos a este classificador que obteve a taxa de acerto de classificação em torno de 93%. Experimentos anteriores, utilizando modelos de predição linear, de ordem 10, obtiveram uma taxa de acerto em torno de 82%. Isso demonstra que estes novos parâmetros característicos propostos alcançam os objetivos deste trabalho, que são algoritmos com melhor taxa de acerto na detecção de vazamentos.
publishDate 2011
dc.date.none.fl_str_mv 2011-04-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-19072011-110149/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-19072011-110149/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257172757446656