Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade

Detalhes bibliográficos
Autor(a) principal: Coelho, Angela Mello
Data de Publicação: 2006
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052006-162404/
Resumo: A meta principal desse trabalho foi comparar métodos de estimação para coeficientes de herdabilidade para os modelos inteiramente ao acaso e em blocos casualizados. Para os dois casos foram utilizadas as definições de coeficiente de herdabilidade (h2) no sentido restrito, dadas respectivamente, por h2=4 σ2t/(σ2+σ2t) e h2=4 σ2t/(σ2+σ2t+σ2b). . Portanto, é preciso estimar os componentes de variância relativos ao erro experimental (σ2) e ao efeito de tratamentos (σ2t) quando se deseja estimar h2 para o modelo inteiramente ao acaso. Para o modelo para blocos casualizados, além de estimar os últimos dois componentes, é necessário estimar o componente de variância relativo ao efeito de blocos (σ2b). Para atingir a meta estabelecida, partiu-se de um conjunto de dados cujo coeficiente de herdabilidade é conhecido, o que foi feito através da simulação de dados. Foram comparados dois métodos de estimação, o método da análise da variância e método da máxima verossimilhança. Foram feitas 80 simulações, 40 para cada ensaio. Para os dois modelos, as 40 simulações foram divididas em 4 casos contendo 10 simulações. Cada caso considerou um valor distinto para h2, esses foram: h2=0,10; 0,20; 0,30 e 0,40; para cada um desses casos foram fixados 10 valores distintos para o σ2, a saber: σ2=10; 20; 30; 40; 50; 60; 70; 80; 90; 100. Os valores relativos ao σ2 foram encontrados através da equação dada para os coeficientes de herdabilidade, sendo que, para o modelo em blocos casualizados, foi fixado σ2b=20 para todas os 40 casos. Após realizadas as 80 simulações, cada uma obtendo 1000 conjunto de dados, e por conseqüência 1000 estimativas para cada componente de variância e coeficiente de herdabilidade relativos a cada um dos casos, foram obtidas estatísticas descritivas e histogramas de cada conjunto de 1000 estimativas. A comparação dos métodos foi feita através da comparação dessas estatísticas descritivas e histogramas, tendo como referência os valores dos parâmetros utilizados nas simulações. Para ambos os modelos observou-se que os dois métodos se aproximam quanto a estimação de σ2. Para o delineamento inteiramente casualizado, o método da máxima verossimilhança forneceu estimativas que, em média, subestimaram os valores de σ2t, e por conseqüência, tendem a superestimar o h2, o que não acontece para o método da análise da variância. Para o modelo em blocos casualizados, ambos os métodos se assemelham, também, quanto à estimação de σ2t, porém o método da máxima verossimilhança fornece estimativas que tendem a subestimar o σ2b, e e por conseqüência, tendem a superestimar o h2, o que não acontece para o método da análise da variância. Logo, o método da análise da variância se mostrou mais confiável quando se objetiva estimar componentes de variância e coeficientes de herdabilidade para ambos os modelos considerados.
id USP_2dbbab01a602b7cfb067db48315d8ef9
oai_identifier_str oai:teses.usp.br:tde-04052006-162404
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidadeSimulation of data aiming at the estimation of variance components and heritabilityanálise de variânciaanalysis of variancecomponente de variânciaestimation theoryherdabilidadeheritabilitylikelihoodsimulação – estatísticastatistical - simulationteoria da estimaçãovariance componentsverossimilhançaA meta principal desse trabalho foi comparar métodos de estimação para coeficientes de herdabilidade para os modelos inteiramente ao acaso e em blocos casualizados. Para os dois casos foram utilizadas as definições de coeficiente de herdabilidade (h2) no sentido restrito, dadas respectivamente, por h2=4 σ2t/(σ2+σ2t) e h2=4 σ2t/(σ2+σ2t+σ2b). . Portanto, é preciso estimar os componentes de variância relativos ao erro experimental (σ2) e ao efeito de tratamentos (σ2t) quando se deseja estimar h2 para o modelo inteiramente ao acaso. Para o modelo para blocos casualizados, além de estimar os últimos dois componentes, é necessário estimar o componente de variância relativo ao efeito de blocos (σ2b). Para atingir a meta estabelecida, partiu-se de um conjunto de dados cujo coeficiente de herdabilidade é conhecido, o que foi feito através da simulação de dados. Foram comparados dois métodos de estimação, o método da análise da variância e método da máxima verossimilhança. Foram feitas 80 simulações, 40 para cada ensaio. Para os dois modelos, as 40 simulações foram divididas em 4 casos contendo 10 simulações. Cada caso considerou um valor distinto para h2, esses foram: h2=0,10; 0,20; 0,30 e 0,40; para cada um desses casos foram fixados 10 valores distintos para o σ2, a saber: σ2=10; 20; 30; 40; 50; 60; 70; 80; 90; 100. Os valores relativos ao σ2 foram encontrados através da equação dada para os coeficientes de herdabilidade, sendo que, para o modelo em blocos casualizados, foi fixado σ2b=20 para todas os 40 casos. Após realizadas as 80 simulações, cada uma obtendo 1000 conjunto de dados, e por conseqüência 1000 estimativas para cada componente de variância e coeficiente de herdabilidade relativos a cada um dos casos, foram obtidas estatísticas descritivas e histogramas de cada conjunto de 1000 estimativas. A comparação dos métodos foi feita através da comparação dessas estatísticas descritivas e histogramas, tendo como referência os valores dos parâmetros utilizados nas simulações. Para ambos os modelos observou-se que os dois métodos se aproximam quanto a estimação de σ2. Para o delineamento inteiramente casualizado, o método da máxima verossimilhança forneceu estimativas que, em média, subestimaram os valores de σ2t, e por conseqüência, tendem a superestimar o h2, o que não acontece para o método da análise da variância. Para o modelo em blocos casualizados, ambos os métodos se assemelham, também, quanto à estimação de σ2t, porém o método da máxima verossimilhança fornece estimativas que tendem a subestimar o σ2b, e e por conseqüência, tendem a superestimar o h2, o que não acontece para o método da análise da variância. Logo, o método da análise da variância se mostrou mais confiável quando se objetiva estimar componentes de variância e coeficientes de herdabilidade para ambos os modelos considerados.The main aim of this work was to compare methods of estimation of heritability for the 1- way classification and the 2-way crossed classification without interaction. For both cases the definition of heritability (h2) in the narrow sense was used, given respectively, by h2=4σ2t/(σ2+σ2t) e h2=4σ2t/(σ2+σ2t+σ2b). Therefore, there is a need to estimate the components of variance related to the residual (σ2) and the effect of treatments (σ2t) in order to estimate (h2) for the 1-way classification. For the 2-way classification without interaction, there is a need to estimate the component of variance related to the effect of blocks (σ2b) as well as the other two components. To achieve the established aim, a data set with known heritability was used, produced by simulation. Two methods of estimation were compared: the analysis of variance method and the maximum likelihood method. 80 simulations were made, 40 for each classification. For both models, the 40 simulations were divided into 4 different groups containing 10 simulations. Each group considered a different value for h2 (h2=0,10; 0,20; 0,30 e 0,40) and for each one of those cases there were 10 different values fixed for) σ2 (σ2=10; 20; 30; 40; 50; 60; 70; 80; 90; 100). The values for σ2t were found using the equations for the heritability, and for the 2-way crossed classification without interaction, σ2b=20 for all the 40 cases. After the 80 simulations were done, each one obtaining 1000 data sets, and therefore 1000 estimates of each component of variance and the heritability, descriptive statistics and histograms were obtained for each set of 1000 estimates. The comparison of the methods was made based on the descriptive statistics and histograms, using as references the values of the parameters used in the simulations. For both models, the estimates of σ2 were close to the true values. For the 1-way classification, the maximum likelihood method gave estimates that, on average, underestimated the values of σ2t, and therefore the values of h2. This did not happen with the analysis of variance method. For the 2-way crossed classification without interaction, both methods gave similar estimates of σ2t, although the maximum likelihood method gave estimates that tended to underestimate σ2b and therefore to overestimate h2. This did not happen with the analysis of variance method. Hence, the analysis of variance method proved to be more accurate for the estimation of variance components and heritability for both classifications considered in this work.Biblioteca Digitais de Teses e Dissertações da USPBarbin, DecioCoelho, Angela Mello2006-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052006-162404/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-04052006-162404Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
Simulation of data aiming at the estimation of variance components and heritability
title Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
spellingShingle Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
Coelho, Angela Mello
análise de variância
analysis of variance
componente de variância
estimation theory
herdabilidade
heritability
likelihood
simulação – estatística
statistical - simulation
teoria da estimação
variance components
verossimilhança
title_short Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
title_full Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
title_fullStr Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
title_full_unstemmed Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
title_sort Simulação de dados visando à estimação de componentes de variância e coeficientes de herdabilidade
author Coelho, Angela Mello
author_facet Coelho, Angela Mello
author_role author
dc.contributor.none.fl_str_mv Barbin, Decio
dc.contributor.author.fl_str_mv Coelho, Angela Mello
dc.subject.por.fl_str_mv análise de variância
analysis of variance
componente de variância
estimation theory
herdabilidade
heritability
likelihood
simulação – estatística
statistical - simulation
teoria da estimação
variance components
verossimilhança
topic análise de variância
analysis of variance
componente de variância
estimation theory
herdabilidade
heritability
likelihood
simulação – estatística
statistical - simulation
teoria da estimação
variance components
verossimilhança
description A meta principal desse trabalho foi comparar métodos de estimação para coeficientes de herdabilidade para os modelos inteiramente ao acaso e em blocos casualizados. Para os dois casos foram utilizadas as definições de coeficiente de herdabilidade (h2) no sentido restrito, dadas respectivamente, por h2=4 σ2t/(σ2+σ2t) e h2=4 σ2t/(σ2+σ2t+σ2b). . Portanto, é preciso estimar os componentes de variância relativos ao erro experimental (σ2) e ao efeito de tratamentos (σ2t) quando se deseja estimar h2 para o modelo inteiramente ao acaso. Para o modelo para blocos casualizados, além de estimar os últimos dois componentes, é necessário estimar o componente de variância relativo ao efeito de blocos (σ2b). Para atingir a meta estabelecida, partiu-se de um conjunto de dados cujo coeficiente de herdabilidade é conhecido, o que foi feito através da simulação de dados. Foram comparados dois métodos de estimação, o método da análise da variância e método da máxima verossimilhança. Foram feitas 80 simulações, 40 para cada ensaio. Para os dois modelos, as 40 simulações foram divididas em 4 casos contendo 10 simulações. Cada caso considerou um valor distinto para h2, esses foram: h2=0,10; 0,20; 0,30 e 0,40; para cada um desses casos foram fixados 10 valores distintos para o σ2, a saber: σ2=10; 20; 30; 40; 50; 60; 70; 80; 90; 100. Os valores relativos ao σ2 foram encontrados através da equação dada para os coeficientes de herdabilidade, sendo que, para o modelo em blocos casualizados, foi fixado σ2b=20 para todas os 40 casos. Após realizadas as 80 simulações, cada uma obtendo 1000 conjunto de dados, e por conseqüência 1000 estimativas para cada componente de variância e coeficiente de herdabilidade relativos a cada um dos casos, foram obtidas estatísticas descritivas e histogramas de cada conjunto de 1000 estimativas. A comparação dos métodos foi feita através da comparação dessas estatísticas descritivas e histogramas, tendo como referência os valores dos parâmetros utilizados nas simulações. Para ambos os modelos observou-se que os dois métodos se aproximam quanto a estimação de σ2. Para o delineamento inteiramente casualizado, o método da máxima verossimilhança forneceu estimativas que, em média, subestimaram os valores de σ2t, e por conseqüência, tendem a superestimar o h2, o que não acontece para o método da análise da variância. Para o modelo em blocos casualizados, ambos os métodos se assemelham, também, quanto à estimação de σ2t, porém o método da máxima verossimilhança fornece estimativas que tendem a subestimar o σ2b, e e por conseqüência, tendem a superestimar o h2, o que não acontece para o método da análise da variância. Logo, o método da análise da variância se mostrou mais confiável quando se objetiva estimar componentes de variância e coeficientes de herdabilidade para ambos os modelos considerados.
publishDate 2006
dc.date.none.fl_str_mv 2006-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052006-162404/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052006-162404/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256655404728320