Simulation-based Optimization of System-of-Systems Software Architectures

Detalhes bibliográficos
Autor(a) principal: Manzano, Wallace Alves Esteves
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-15062023-163024/
Resumo: Society is increasingly dependent on services provided by complex, integrated software systems so that an isolated system has not been successful in meeting these demands. In this scenario, Systems-of-Systems (SoS) have emerged as a result of the interoperability of independent systems both operationally and managerially to provide more complex solutions that no system would be able to provide in isolation. Due to the independence of the SoS constituent systems, these constituents can exit and enter the SoS at any time, resulting in a highly dynamic architecture. SoS is often linked to critical tasks, that is, which can pose threats to human integrity. Thus, the system must ensure that the software architecture has a high level of quality so that the system can offer a reliable and flawless service. However, due to the non-determinism generated by dynamic architecture, it is necessary to check the architecture at design time. Considering the high cost and threats of implementing critical systems without due verification of their architecture, this masters project proposes a simulation-based optimization framework using meta-heuristics to enable the optimization of quality attributes, including performance and availability, of SoS software architectures. This framework consists in two main elements, a process that defines how the simulation-based optimization is performed in the context of SoS software architecture, and an infrastructure that defines the software requirements to perform the process. This framework was evaluated using a case study of a smart building, and results shows that it is successful in carrying out with a good performance the task of performing simulation-based optimization of a SoS software architecture.
id USP_2e507a31e8769a75e1af244d0fca4ee2
oai_identifier_str oai:teses.usp.br:tde-15062023-163024
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Simulation-based Optimization of System-of-Systems Software ArchitecturesOtimização baseada em Simulação de Arquiteturas de Software de Sistemas-de-SistemasAprendizado de máquinaArquitetura de softwareMachine learningOptimizationOtimizaçãoSistemas-de-SistemasSoftware architectureSystems-of-SystemsSociety is increasingly dependent on services provided by complex, integrated software systems so that an isolated system has not been successful in meeting these demands. In this scenario, Systems-of-Systems (SoS) have emerged as a result of the interoperability of independent systems both operationally and managerially to provide more complex solutions that no system would be able to provide in isolation. Due to the independence of the SoS constituent systems, these constituents can exit and enter the SoS at any time, resulting in a highly dynamic architecture. SoS is often linked to critical tasks, that is, which can pose threats to human integrity. Thus, the system must ensure that the software architecture has a high level of quality so that the system can offer a reliable and flawless service. However, due to the non-determinism generated by dynamic architecture, it is necessary to check the architecture at design time. Considering the high cost and threats of implementing critical systems without due verification of their architecture, this masters project proposes a simulation-based optimization framework using meta-heuristics to enable the optimization of quality attributes, including performance and availability, of SoS software architectures. This framework consists in two main elements, a process that defines how the simulation-based optimization is performed in the context of SoS software architecture, and an infrastructure that defines the software requirements to perform the process. This framework was evaluated using a case study of a smart building, and results shows that it is successful in carrying out with a good performance the task of performing simulation-based optimization of a SoS software architecture.A sociedade está cada vez mais dependente de serviços prestados por sistemas de software complexos e integrados, de modo que um sistema isolado não tem conseguido atender a essas demandas. Nesse cenário, os Sistemas-de-Sistemas (SoS) surgiram como resultado da interoperabilidade de sistemas independentes tanto operacional quanto gerencialmente para fornecer soluções mais complexas que nenhum sistema seria capaz de fornecer isoladamente. Devido à independência dos sistemas constituintes do SoS, esses constituintes podem sair e entrar no SoS a qualquer momento, resultando em uma arquitetura altamente dinâmica. O SoS costuma estar vinculado a tarefas críticas, ou seja, que podem representar ameaças à integridade humana. Assim, o sistema deve garantir que a arquitetura de software tenha um alto nível de qualidade para que o sistema possa oferecer um serviço confiável e sem falhas. Porém, devido ao não determinismo gerado pela arquitetura dinâmica, é necessário verificar a arquitetura em tempo de projeto. Considerando o alto custo e as ameaças de implementar sistemas críticos sem a devida verificação de sua arquitetura, este projeto de mestrado propõe um framework de otimização baseado em simulação usando meta-heurísticas para permitir a otimização de atributos de qualidade, incluindo desempenho e disponibilidade, de arquiteturas de software SoS. Este framework consiste em dois elementos principais, um processo que define como a otimização baseada em simulação é realizada no contexto da arquitetura de software SoS, e uma infraestrutura que define os requisitos de software para realizar o processo. Este framework foi avaliado por meio de um estudo de caso de um edifício inteligente, e os resultados mostram que ele é bem-sucedido em realizar com bom desempenho a tarefa de realizar a otimização baseada em simulação de uma arquitetura de software SoS.Biblioteca Digitais de Teses e Dissertações da USPNakagawa, Elisa YumiManzano, Wallace Alves Esteves2023-04-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-15062023-163024/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-06-15T19:33:32Zoai:teses.usp.br:tde-15062023-163024Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-06-15T19:33:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simulation-based Optimization of System-of-Systems Software Architectures
Otimização baseada em Simulação de Arquiteturas de Software de Sistemas-de-Sistemas
title Simulation-based Optimization of System-of-Systems Software Architectures
spellingShingle Simulation-based Optimization of System-of-Systems Software Architectures
Manzano, Wallace Alves Esteves
Aprendizado de máquina
Arquitetura de software
Machine learning
Optimization
Otimização
Sistemas-de-Sistemas
Software architecture
Systems-of-Systems
title_short Simulation-based Optimization of System-of-Systems Software Architectures
title_full Simulation-based Optimization of System-of-Systems Software Architectures
title_fullStr Simulation-based Optimization of System-of-Systems Software Architectures
title_full_unstemmed Simulation-based Optimization of System-of-Systems Software Architectures
title_sort Simulation-based Optimization of System-of-Systems Software Architectures
author Manzano, Wallace Alves Esteves
author_facet Manzano, Wallace Alves Esteves
author_role author
dc.contributor.none.fl_str_mv Nakagawa, Elisa Yumi
dc.contributor.author.fl_str_mv Manzano, Wallace Alves Esteves
dc.subject.por.fl_str_mv Aprendizado de máquina
Arquitetura de software
Machine learning
Optimization
Otimização
Sistemas-de-Sistemas
Software architecture
Systems-of-Systems
topic Aprendizado de máquina
Arquitetura de software
Machine learning
Optimization
Otimização
Sistemas-de-Sistemas
Software architecture
Systems-of-Systems
description Society is increasingly dependent on services provided by complex, integrated software systems so that an isolated system has not been successful in meeting these demands. In this scenario, Systems-of-Systems (SoS) have emerged as a result of the interoperability of independent systems both operationally and managerially to provide more complex solutions that no system would be able to provide in isolation. Due to the independence of the SoS constituent systems, these constituents can exit and enter the SoS at any time, resulting in a highly dynamic architecture. SoS is often linked to critical tasks, that is, which can pose threats to human integrity. Thus, the system must ensure that the software architecture has a high level of quality so that the system can offer a reliable and flawless service. However, due to the non-determinism generated by dynamic architecture, it is necessary to check the architecture at design time. Considering the high cost and threats of implementing critical systems without due verification of their architecture, this masters project proposes a simulation-based optimization framework using meta-heuristics to enable the optimization of quality attributes, including performance and availability, of SoS software architectures. This framework consists in two main elements, a process that defines how the simulation-based optimization is performed in the context of SoS software architecture, and an infrastructure that defines the software requirements to perform the process. This framework was evaluated using a case study of a smart building, and results shows that it is successful in carrying out with a good performance the task of performing simulation-based optimization of a SoS software architecture.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-15062023-163024/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-15062023-163024/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257024272793600