Integration of heterogeneous data: a multi-omics application

Detalhes bibliográficos
Autor(a) principal: Vasconcelos, Ana Gabriela Pereira de
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01092020-164939/
Resumo: Nowadays, a huge amount of data has being collected in different research areas, such as public health, agriculture, marketing, so high-dimension databases are becoming very common to encounter. More specifically, with the advance of technology many biological information are now available at low costs -- data from genome, miRNA (MicroRNA), mRNA (messenger RNA), gene expression, protein, methylation, lipids, metabolism, phenotypes and so on. Several different studies have been done individually with each type of data, but more recently there is an increasingly interest in integrating different data to gather more information. However, many classical methodologies used to this end assume the data matrix to be completed and numerical. Therefore, the heterogeneity of dataset with different variable types is not considered. Alternatively, the Generalized Low Rank Models (GLRM) is a tool capable of dealing with large datasets of heterogeneous data. Although its use is destined for a single database, this projects shows that it is flexible enough to handle abstract data, from different sources, by using different loss functions, adequate to each variable type. GLRM is a very powerful method that can deal with problems from different natures, but it is very recent, so its potential to work with multi-omics is still being discovered. In this context, the present work introduces GLRM and explores its possibilities for dimensionality reduction on supervised and unsupervised analysis using simulated and real multi-omics datasets.
id USP_2f5ccc1fc448c33d9a4a8cd386f3baa1
oai_identifier_str oai:teses.usp.br:tde-01092020-164939
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Integration of heterogeneous data: a multi-omics applicationIntegração de dados heterogêneos: uma aplicação em dados multi-ômicosAnálise multivariadaDados multi-ômicosFatorização de matrizesGeneralized low rank modelsGeneralized low rank modelsMatrix factorizationMulti-omicsMultivariate analysisNowadays, a huge amount of data has being collected in different research areas, such as public health, agriculture, marketing, so high-dimension databases are becoming very common to encounter. More specifically, with the advance of technology many biological information are now available at low costs -- data from genome, miRNA (MicroRNA), mRNA (messenger RNA), gene expression, protein, methylation, lipids, metabolism, phenotypes and so on. Several different studies have been done individually with each type of data, but more recently there is an increasingly interest in integrating different data to gather more information. However, many classical methodologies used to this end assume the data matrix to be completed and numerical. Therefore, the heterogeneity of dataset with different variable types is not considered. Alternatively, the Generalized Low Rank Models (GLRM) is a tool capable of dealing with large datasets of heterogeneous data. Although its use is destined for a single database, this projects shows that it is flexible enough to handle abstract data, from different sources, by using different loss functions, adequate to each variable type. GLRM is a very powerful method that can deal with problems from different natures, but it is very recent, so its potential to work with multi-omics is still being discovered. In this context, the present work introduces GLRM and explores its possibilities for dimensionality reduction on supervised and unsupervised analysis using simulated and real multi-omics datasets.Atualmente, uma enorme quantidade de dados tem sido coletada em diversas áreas do conhecimento, como saúde, agropecuária, marketing, fazendo com que dados de alta dimensão se tornem cada vez mais comuns. Mais especificamente, com os avanços da tecnologia muitas informações biológicas estão disponíveis por preços acessíveis como dados do genoma, miRNA (micro RNA), mRNA (RNA mensageiro), expressão gênica e proteica, metilação, lipídeos, metabólicos e de fenótipos, por exemplo. Diversos estudos têm sido feitos para análise de cada tipo de dados individualmente, entretanto, recentemente vem se tornando interessante integrar diferentes tipos de dados para obter mais informação. Porém, muitas das metodologias clássicas utilizadas com esse objetivo assumem que a matriz de dados é completa e numérica. Portanto, a heterogeneidade de dados com variáveis de diversos tipos não está sendo considerada. Alternativamente, os Generalized Low Rank Models (GLRM) são modelos capazes de lidar com grandes bancos de dados com variáveis heterogêneas. Apesar desse método ser destinado para um único banco de dados, mostramos neste trabalho que ele é flexível o bastante para lidar com dados abstratos, de diferentes fontes, ao atribuir funções perdas diferentes, adequadas para cada tipo de variável. Com isso, o GLRM é uma ferramenta para trabalhar com problemas de diversas naturezas, mas, por ser muito recente, seu potencial para trabalhar com dados multi-ômicos ainda está sendo descoberto. Neste contexto, no presente trabalho O GRLM é introduzido e são exploradas diferentes possibilidades de usar o GLRM para redução de dimensionalidade e integração de bancos de dados em análises supervisionadas e não supervisionadas utilizando dados multi-ômicos simulados e reais.Biblioteca Digitais de Teses e Dissertações da USPSoler, Julia Maria PavanVasconcelos, Ana Gabriela Pereira de2020-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-01092020-164939/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-14T21:28:02Zoai:teses.usp.br:tde-01092020-164939Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-14T21:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Integration of heterogeneous data: a multi-omics application
Integração de dados heterogêneos: uma aplicação em dados multi-ômicos
title Integration of heterogeneous data: a multi-omics application
spellingShingle Integration of heterogeneous data: a multi-omics application
Vasconcelos, Ana Gabriela Pereira de
Análise multivariada
Dados multi-ômicos
Fatorização de matrizes
Generalized low rank models
Generalized low rank models
Matrix factorization
Multi-omics
Multivariate analysis
title_short Integration of heterogeneous data: a multi-omics application
title_full Integration of heterogeneous data: a multi-omics application
title_fullStr Integration of heterogeneous data: a multi-omics application
title_full_unstemmed Integration of heterogeneous data: a multi-omics application
title_sort Integration of heterogeneous data: a multi-omics application
author Vasconcelos, Ana Gabriela Pereira de
author_facet Vasconcelos, Ana Gabriela Pereira de
author_role author
dc.contributor.none.fl_str_mv Soler, Julia Maria Pavan
dc.contributor.author.fl_str_mv Vasconcelos, Ana Gabriela Pereira de
dc.subject.por.fl_str_mv Análise multivariada
Dados multi-ômicos
Fatorização de matrizes
Generalized low rank models
Generalized low rank models
Matrix factorization
Multi-omics
Multivariate analysis
topic Análise multivariada
Dados multi-ômicos
Fatorização de matrizes
Generalized low rank models
Generalized low rank models
Matrix factorization
Multi-omics
Multivariate analysis
description Nowadays, a huge amount of data has being collected in different research areas, such as public health, agriculture, marketing, so high-dimension databases are becoming very common to encounter. More specifically, with the advance of technology many biological information are now available at low costs -- data from genome, miRNA (MicroRNA), mRNA (messenger RNA), gene expression, protein, methylation, lipids, metabolism, phenotypes and so on. Several different studies have been done individually with each type of data, but more recently there is an increasingly interest in integrating different data to gather more information. However, many classical methodologies used to this end assume the data matrix to be completed and numerical. Therefore, the heterogeneity of dataset with different variable types is not considered. Alternatively, the Generalized Low Rank Models (GLRM) is a tool capable of dealing with large datasets of heterogeneous data. Although its use is destined for a single database, this projects shows that it is flexible enough to handle abstract data, from different sources, by using different loss functions, adequate to each variable type. GLRM is a very powerful method that can deal with problems from different natures, but it is very recent, so its potential to work with multi-omics is still being discovered. In this context, the present work introduces GLRM and explores its possibilities for dimensionality reduction on supervised and unsupervised analysis using simulated and real multi-omics datasets.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01092020-164939/
url https://www.teses.usp.br/teses/disponiveis/45/45133/tde-01092020-164939/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256586655891456