Modelos assimétricos inflacionados de zeros
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-21012015-184339/ |
Resumo: | A principal motivação desse estudo é a análise da quantidade de sangue recebido em transfusão (padronizada pelo peso) por crianças com problemas hepáticos. Essa quantidade apresenta distribuição assimétrica, além de valores iguais a zero para as crianças que não receberam transfusão. Os modelos lineares generalizados, usuais para variáveis positivas, não permitem a inclusão de zeros. Para os dados positivos, foram ajustados tais modelos com distribuição gama e normal inversa. Também foi considerado o modelo log-normal. A análise de resíduos padronizados indicou heterocedasticidade, e portanto a variabilidade extra foi modelada utilizando a classe de modelos GAMLSS. A terceira abordagem consiste em modelos baseados na mistura de zeros e distribuições para valores positivos, incluídos recentemente na família dos modelos GAMLSS. Estes aliam a distribuição assimétrica para os dados positivos e a probabilidade da ocorrência de zeros. Na análise dos dados de transfusão, observa-se que a distribuição normal inversa apresentou melhor ajuste por acomodar dados com forte assimetria em relação às demais distribuições consideradas. Foram significativos os efeitos das variáveis explicativas Kasai (ocorrência de operação prévia) e PELD (nível de uma medida da gravidade do paciente com 4 níveis) assim como os efeitos de interação sobre a média e variabilidade da quantidade de sangue recebida. A possibilidade de acrescentar efeitos de variáveis explicativas para modelar o parâmetro de dispersão, permite que a variabilidade extra, além de sua dependência da média, seja melhor explicada e melhore o ajuste do modelo. A probabilidade de não receber transfusão depende de modo significativo somente de PELD. A proposta de um só modelo que alia a presença de zeros e diversas distribuições assimétricas facilita o ajuste dos dados e a análise de resíduos. Seus resultados são equivalentes à abordagem em que a ocorrência ou não de transfusão é analisada por meio de modelo logístico independente da modelagem dos dados positivos com distribuições assimétricas. |
id |
USP_306e716efc0a2c4a971d99a6ff87349a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21012015-184339 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos assimétricos inflacionados de zerosZero-inflated asymmetric modelsgamaGAMLSSGAMLSSgammainverse Gaussianmodelos inflacionados de zerosnormal inversazero-adjusted modelsA principal motivação desse estudo é a análise da quantidade de sangue recebido em transfusão (padronizada pelo peso) por crianças com problemas hepáticos. Essa quantidade apresenta distribuição assimétrica, além de valores iguais a zero para as crianças que não receberam transfusão. Os modelos lineares generalizados, usuais para variáveis positivas, não permitem a inclusão de zeros. Para os dados positivos, foram ajustados tais modelos com distribuição gama e normal inversa. Também foi considerado o modelo log-normal. A análise de resíduos padronizados indicou heterocedasticidade, e portanto a variabilidade extra foi modelada utilizando a classe de modelos GAMLSS. A terceira abordagem consiste em modelos baseados na mistura de zeros e distribuições para valores positivos, incluídos recentemente na família dos modelos GAMLSS. Estes aliam a distribuição assimétrica para os dados positivos e a probabilidade da ocorrência de zeros. Na análise dos dados de transfusão, observa-se que a distribuição normal inversa apresentou melhor ajuste por acomodar dados com forte assimetria em relação às demais distribuições consideradas. Foram significativos os efeitos das variáveis explicativas Kasai (ocorrência de operação prévia) e PELD (nível de uma medida da gravidade do paciente com 4 níveis) assim como os efeitos de interação sobre a média e variabilidade da quantidade de sangue recebida. A possibilidade de acrescentar efeitos de variáveis explicativas para modelar o parâmetro de dispersão, permite que a variabilidade extra, além de sua dependência da média, seja melhor explicada e melhore o ajuste do modelo. A probabilidade de não receber transfusão depende de modo significativo somente de PELD. A proposta de um só modelo que alia a presença de zeros e diversas distribuições assimétricas facilita o ajuste dos dados e a análise de resíduos. Seus resultados são equivalentes à abordagem em que a ocorrência ou não de transfusão é analisada por meio de modelo logístico independente da modelagem dos dados positivos com distribuições assimétricas.The main motivation of this study is to analyze the amount of blood transfusions received (by weight) of children with liver problems. This amount shows asymmetric distribution as well as present zero values for children who did not receive transfusions. The usual generalized linear models for positive variables do not allow the inclusion of zeros. For positive data, such models with gamma and inverse normal distributions were fitted in this study. Log-normal distribution was also considered. Analysis of the standardized residuals indicated heterocedasticity and therefore the extra variability was modelled using GAMLSS. The third approach consists of models based on a mixture of zeros and distributions for positive values, also recently included in the family of GAMLSS models. These models combine the asymmetric distribution of positive data and the probability of occurrence of zeros. In the data analysis of transfusion, the inverse normal distribution showed better goodness of fit to allow adjustment of data with greater asymmetry than the other distributions considered. The effects of the explanatory variables Kasai (occurrence of previous operation) and PELD level (a measure of the severity of the patient with 4 levels) and interaction effects on the mean and variability of the amount of blood received were signicant. The inclusion of explanatory variables to model the dispersion parameter, allows to model the extra variability, beyond its dependence on the average, and improves fitness of the model. The probability of not receiving transfusion depends signicantly only PELD. The proposal of a unified model that combines the presence of zeros and several asymmetric distributions greatly facilitates the fitness of the model and the evaluation of fitness. An advantage is the equivalence between this model and a separate logistic model to for the probability of the occurrence of transfusion and a model for the positive skewed data.Biblioteca Digitais de Teses e Dissertações da USPAlencar, Airlane PereiraDias, Mariana Ferreira2014-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-21012015-184339/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T18:30:03Zoai:teses.usp.br:tde-21012015-184339Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T18:30:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos assimétricos inflacionados de zeros Zero-inflated asymmetric models |
title |
Modelos assimétricos inflacionados de zeros |
spellingShingle |
Modelos assimétricos inflacionados de zeros Dias, Mariana Ferreira gama GAMLSS GAMLSS gamma inverse Gaussian modelos inflacionados de zeros normal inversa zero-adjusted models |
title_short |
Modelos assimétricos inflacionados de zeros |
title_full |
Modelos assimétricos inflacionados de zeros |
title_fullStr |
Modelos assimétricos inflacionados de zeros |
title_full_unstemmed |
Modelos assimétricos inflacionados de zeros |
title_sort |
Modelos assimétricos inflacionados de zeros |
author |
Dias, Mariana Ferreira |
author_facet |
Dias, Mariana Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Alencar, Airlane Pereira |
dc.contributor.author.fl_str_mv |
Dias, Mariana Ferreira |
dc.subject.por.fl_str_mv |
gama GAMLSS GAMLSS gamma inverse Gaussian modelos inflacionados de zeros normal inversa zero-adjusted models |
topic |
gama GAMLSS GAMLSS gamma inverse Gaussian modelos inflacionados de zeros normal inversa zero-adjusted models |
description |
A principal motivação desse estudo é a análise da quantidade de sangue recebido em transfusão (padronizada pelo peso) por crianças com problemas hepáticos. Essa quantidade apresenta distribuição assimétrica, além de valores iguais a zero para as crianças que não receberam transfusão. Os modelos lineares generalizados, usuais para variáveis positivas, não permitem a inclusão de zeros. Para os dados positivos, foram ajustados tais modelos com distribuição gama e normal inversa. Também foi considerado o modelo log-normal. A análise de resíduos padronizados indicou heterocedasticidade, e portanto a variabilidade extra foi modelada utilizando a classe de modelos GAMLSS. A terceira abordagem consiste em modelos baseados na mistura de zeros e distribuições para valores positivos, incluídos recentemente na família dos modelos GAMLSS. Estes aliam a distribuição assimétrica para os dados positivos e a probabilidade da ocorrência de zeros. Na análise dos dados de transfusão, observa-se que a distribuição normal inversa apresentou melhor ajuste por acomodar dados com forte assimetria em relação às demais distribuições consideradas. Foram significativos os efeitos das variáveis explicativas Kasai (ocorrência de operação prévia) e PELD (nível de uma medida da gravidade do paciente com 4 níveis) assim como os efeitos de interação sobre a média e variabilidade da quantidade de sangue recebida. A possibilidade de acrescentar efeitos de variáveis explicativas para modelar o parâmetro de dispersão, permite que a variabilidade extra, além de sua dependência da média, seja melhor explicada e melhore o ajuste do modelo. A probabilidade de não receber transfusão depende de modo significativo somente de PELD. A proposta de um só modelo que alia a presença de zeros e diversas distribuições assimétricas facilita o ajuste dos dados e a análise de resíduos. Seus resultados são equivalentes à abordagem em que a ocorrência ou não de transfusão é analisada por meio de modelo logístico independente da modelagem dos dados positivos com distribuições assimétricas. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-21012015-184339/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-21012015-184339/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257232394158080 |