Dissecação dinâmica de condutâncias iônicas em tempo real

Detalhes bibliográficos
Autor(a) principal: Viegas, Rafael Giordano
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19042011-100658/
Resumo: Investigamos o papel de condutâncias iônicas lentas na transmissão/codificação de informação entre neurônios que disparam em rajadas ou bursts. Para isso, desenvolvemos um protocolo experimental no qual a interação em tempo real entre computador e neurônio biológico permite isolar o efeito da dinâmica de um determinado tipo de canal iônico e estudar sua inuência nos mecanismos de codificação de informação. Os experimentos foram realizados com neurônios do gânglio estomatogástrico do siri azul, Callinectes sapidus, que não possuem condutâncias lentas capazes de fazê-los apresentar rajadas de disparos quando in vitro, condição na qual apresentam comportamento quiescente ou disparam tonicamente. Durante os experimentos, alteramos artificialmente o comportamento de um destes neurônios, conectando-o a um computador que introduz uma corrente capaz de fazê-lo apresentar rajadas. Essa corrente possui uma componente senoidal (vinda de um gerador de funções) e uma componente devido a uma condutância iônica lenta modelada matematicamente. A condutância lenta pode ser escolhida entre duas versões: uma em que a condutância é calculada em tempo real, a partir do valor instantâneo do potencial de membrana do neurônio biológico, e outra em que o valor da condutância é oriundo de uma série temporal previamente gravada. A fonte de informação utilizada nos experimentos é um neurônio artificial pré-sináptico, que possui uma distribuição de potenciais de ação (spikes) escolhida pelo experimentador, e é conectado ao neurônio biológico modificado através de um modelo de sinapse química inibidora. A quantidade de informação do neurônio artificial (variabilidade dos padrões de disparo) codificada pelo neurônio biológico é inferida calculando-se a informação mútua média entre eles para as duas versões da condutância lenta (dinâmica ou previamente gravada). Nossos experimentos reproduziram qualitativamente as observações feitas por nosso grupo no circuito pilórico intacto do siri, que possui neurônios conectados por mutua inibição que naturalmente apresentam bursts. Além disso, observamos que vários picos de informação mútua média, presentes quando a condutância é dinâmica, desaparecem quando esta é substituída pela série temporal previamente gravada da condutância. Assim, pudemos confirmar os resultados previamente obtidos com simulações computacionais em que foram utilizados apenas modelos matemáticos e na ausência de ruído e demonstramos que as condutâncias iônicas lentas constituem um mecanismo biofísico que permite a codificação de estímulos sinápticos em neurônios que apresentam rajadas.
id USP_307b7bc6d9aff8ba5a6e991e0b25e98c
oai_identifier_str oai:teses.usp.br:tde-19042011-100658
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Dissecação dinâmica de condutâncias iônicas em tempo realDynamic dissection of ionic conductances in real timeCodificação neuralDynamic ClampDynamic clampGânglio estomatogástricoInformation theoryModelagem realista de neurôniosNeural codingRealistic neural modelingStomatogastric ganglionTeoria da informaçãoInvestigamos o papel de condutâncias iônicas lentas na transmissão/codificação de informação entre neurônios que disparam em rajadas ou bursts. Para isso, desenvolvemos um protocolo experimental no qual a interação em tempo real entre computador e neurônio biológico permite isolar o efeito da dinâmica de um determinado tipo de canal iônico e estudar sua inuência nos mecanismos de codificação de informação. Os experimentos foram realizados com neurônios do gânglio estomatogástrico do siri azul, Callinectes sapidus, que não possuem condutâncias lentas capazes de fazê-los apresentar rajadas de disparos quando in vitro, condição na qual apresentam comportamento quiescente ou disparam tonicamente. Durante os experimentos, alteramos artificialmente o comportamento de um destes neurônios, conectando-o a um computador que introduz uma corrente capaz de fazê-lo apresentar rajadas. Essa corrente possui uma componente senoidal (vinda de um gerador de funções) e uma componente devido a uma condutância iônica lenta modelada matematicamente. A condutância lenta pode ser escolhida entre duas versões: uma em que a condutância é calculada em tempo real, a partir do valor instantâneo do potencial de membrana do neurônio biológico, e outra em que o valor da condutância é oriundo de uma série temporal previamente gravada. A fonte de informação utilizada nos experimentos é um neurônio artificial pré-sináptico, que possui uma distribuição de potenciais de ação (spikes) escolhida pelo experimentador, e é conectado ao neurônio biológico modificado através de um modelo de sinapse química inibidora. A quantidade de informação do neurônio artificial (variabilidade dos padrões de disparo) codificada pelo neurônio biológico é inferida calculando-se a informação mútua média entre eles para as duas versões da condutância lenta (dinâmica ou previamente gravada). Nossos experimentos reproduziram qualitativamente as observações feitas por nosso grupo no circuito pilórico intacto do siri, que possui neurônios conectados por mutua inibição que naturalmente apresentam bursts. Além disso, observamos que vários picos de informação mútua média, presentes quando a condutância é dinâmica, desaparecem quando esta é substituída pela série temporal previamente gravada da condutância. Assim, pudemos confirmar os resultados previamente obtidos com simulações computacionais em que foram utilizados apenas modelos matemáticos e na ausência de ruído e demonstramos que as condutâncias iônicas lentas constituem um mecanismo biofísico que permite a codificação de estímulos sinápticos em neurônios que apresentam rajadas.We investigated the role of slow ionic conductances on information processing by bursting neurons. A real time experimental protocol was developed to allow interacting computer models and biological neurons to address the effect of dynamical details of a single type of ion channel in information coding mechanisms. We experimented on Callinectes sapidus (blue crab) stomatogastric ganglion neurons. Such neurons were chosen because they do not present the slow conductances that can led to bursting activity in vitro (in such conditions they can be found either in a quiescent or in a tonic firing state). The experiments consisted in artificially changing the behavior of one of these neurons by injecting a computer generated current to achieve bursting. Such current has a sinusoidal component (from a function generator) and a component due to mathematical model of a slow ionic conductance. The slow conductance was implemented in two versions: in one of them the instantaneous value of the conductance is computed in real time and according to the membrane potential of the biological neuron, in another version the value of the conductance simply comes from a time series previously stored in the computer. A pre-synaptic artificial neuron, with a spike distribution chosen by the experimenter, provided input for the biological neuron through an artificial chemical inhibitory synapse. The amount of information (variability of spike patterns from the artificial neuron) coded by the biological neuron was inferred by calculating the average mutual information along stimulus and response bursts for the two conditions of the slow conductance (dynamically calculated or from file previously stored). Our experiments reproduced the results found in intact pyloric central pattern generator bursting neurons connected by mutual inhibition. Moreover, we show that the average mutual information peaks, found when the conductance is dynamically calculated, disappear when we use the previously recorded time series of the conductance. Such results validate those only found previously in numerical simulations in the absence of noise and point the role of the slow ionic conductances in a biophysical mechanism that allow bursting motor neurons to encode in a nontrivial fashion the information they receive through a single synapse.Biblioteca Digitais de Teses e Dissertações da USPPinto, Reynaldo DanielViegas, Rafael Giordano2011-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-19042011-100658/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-19042011-100658Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Dissecação dinâmica de condutâncias iônicas em tempo real
Dynamic dissection of ionic conductances in real time
title Dissecação dinâmica de condutâncias iônicas em tempo real
spellingShingle Dissecação dinâmica de condutâncias iônicas em tempo real
Viegas, Rafael Giordano
Codificação neural
Dynamic Clamp
Dynamic clamp
Gânglio estomatogástrico
Information theory
Modelagem realista de neurônios
Neural coding
Realistic neural modeling
Stomatogastric ganglion
Teoria da informação
title_short Dissecação dinâmica de condutâncias iônicas em tempo real
title_full Dissecação dinâmica de condutâncias iônicas em tempo real
title_fullStr Dissecação dinâmica de condutâncias iônicas em tempo real
title_full_unstemmed Dissecação dinâmica de condutâncias iônicas em tempo real
title_sort Dissecação dinâmica de condutâncias iônicas em tempo real
author Viegas, Rafael Giordano
author_facet Viegas, Rafael Giordano
author_role author
dc.contributor.none.fl_str_mv Pinto, Reynaldo Daniel
dc.contributor.author.fl_str_mv Viegas, Rafael Giordano
dc.subject.por.fl_str_mv Codificação neural
Dynamic Clamp
Dynamic clamp
Gânglio estomatogástrico
Information theory
Modelagem realista de neurônios
Neural coding
Realistic neural modeling
Stomatogastric ganglion
Teoria da informação
topic Codificação neural
Dynamic Clamp
Dynamic clamp
Gânglio estomatogástrico
Information theory
Modelagem realista de neurônios
Neural coding
Realistic neural modeling
Stomatogastric ganglion
Teoria da informação
description Investigamos o papel de condutâncias iônicas lentas na transmissão/codificação de informação entre neurônios que disparam em rajadas ou bursts. Para isso, desenvolvemos um protocolo experimental no qual a interação em tempo real entre computador e neurônio biológico permite isolar o efeito da dinâmica de um determinado tipo de canal iônico e estudar sua inuência nos mecanismos de codificação de informação. Os experimentos foram realizados com neurônios do gânglio estomatogástrico do siri azul, Callinectes sapidus, que não possuem condutâncias lentas capazes de fazê-los apresentar rajadas de disparos quando in vitro, condição na qual apresentam comportamento quiescente ou disparam tonicamente. Durante os experimentos, alteramos artificialmente o comportamento de um destes neurônios, conectando-o a um computador que introduz uma corrente capaz de fazê-lo apresentar rajadas. Essa corrente possui uma componente senoidal (vinda de um gerador de funções) e uma componente devido a uma condutância iônica lenta modelada matematicamente. A condutância lenta pode ser escolhida entre duas versões: uma em que a condutância é calculada em tempo real, a partir do valor instantâneo do potencial de membrana do neurônio biológico, e outra em que o valor da condutância é oriundo de uma série temporal previamente gravada. A fonte de informação utilizada nos experimentos é um neurônio artificial pré-sináptico, que possui uma distribuição de potenciais de ação (spikes) escolhida pelo experimentador, e é conectado ao neurônio biológico modificado através de um modelo de sinapse química inibidora. A quantidade de informação do neurônio artificial (variabilidade dos padrões de disparo) codificada pelo neurônio biológico é inferida calculando-se a informação mútua média entre eles para as duas versões da condutância lenta (dinâmica ou previamente gravada). Nossos experimentos reproduziram qualitativamente as observações feitas por nosso grupo no circuito pilórico intacto do siri, que possui neurônios conectados por mutua inibição que naturalmente apresentam bursts. Além disso, observamos que vários picos de informação mútua média, presentes quando a condutância é dinâmica, desaparecem quando esta é substituída pela série temporal previamente gravada da condutância. Assim, pudemos confirmar os resultados previamente obtidos com simulações computacionais em que foram utilizados apenas modelos matemáticos e na ausência de ruído e demonstramos que as condutâncias iônicas lentas constituem um mecanismo biofísico que permite a codificação de estímulos sinápticos em neurônios que apresentam rajadas.
publishDate 2011
dc.date.none.fl_str_mv 2011-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19042011-100658/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19042011-100658/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257165608255488