Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar

Detalhes bibliográficos
Autor(a) principal: Lima, Jeovano de Jesus Alves de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-24052019-150046/
Resumo: A cana-de-açúcar é uma importante cultura semi-perene em regiões tropicais do mundo como a principal fonte de açúcar e bioenergia e o Brasil é seu maior produtor. Como qualquer outra cultura, demanda um aperfeiçoamento prática constante, buscando uma cultura sustentável e com maiores rendimentos e menores custos. Uma das alternativas é a utilização de práticas de agricultura de precisão para explorar a variabilidade espacial dos rendimentos potenciais e para tanto, os mapas de produtividade são essenciais. Para obter os dados necessários para gerar um mapa confiável, é necessário um sistema com capacidade de ler e georreferenciar os dados do sensor e compará-los a uma calibração. No entanto, os resultados das pesquisas mais recentes associadas aos monitores de rendimento comercial, que utilizam apenas um tipo de sensor para determinar os mapas de produtividade, não retratam a exatidão exigida para a cana-de-açúcar. Este estudo teve como objetivo explorar o potencial do uso de dados provenientes de sensores instalados em diferentes partes da colhedora de cana-de-açúcar para determinação e aplicação em monitores de produtividade e determinação de falhas na lavoura. Para fins de comparação foi utilizado um transbordo instrumentado com células de carga para aferição da massa colhida. Foram utilizadas abordagens estatísticas convencionais e inteligência artificial para fusão dos dados e predição da produtividade da cana-de-açúcar, os métodos convencionais foram regressão linear simples e múltipla, e comparado com o método de redes neurais. Além da produtividade foi possível constatar que é possível identificar as falhas na lavoura através dos dados coletados e das falhas produzidas manualmente, todos os sensores medidos identificaram as falhas georeferenciadas. Com relação aos modelos implementados e utilizados, os baseados em regressão linear múltipla não apresentaram potencial na integração e predição da produtividade com os valores de erros definidos nas premissas do trabalho que é de menor que 2%. Além disso os mapas gerados com esses modelos tiveram algumas discrepâncias quanto ao aumento da produtividade em algumas áreas e extração das falhas existentes. Já o modelo de fusão utilizando redes neurais artificiais apresentou uma excelente alternativa para predição da produtividade. Uma vez que a rede é treinada, a mesma apresentou erros inferiores a 2% em todos os mapas gerados. De maneira geral todos os sensores quando avaliados individualmente apresentaram vantagens e desvantagens na determinação da produtividade. Porém, quando fundido os dados dos diversos sensores, as respostas encontradas apresentaram coeficiente de determinação R2 superiores a 95%, RMSE menor que 1kg e RE menor que 2%.
id USP_321f43e067446065f35bf48bfcfa4281
oai_identifier_str oai:teses.usp.br:tde-24052019-150046
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcarFusion of sensors to obtain a yield data for sugarcane harvestersAgricultura de precisãoArtificial neural networkFusão de sensoresFusion of sensorsPrecision agricultureRedes neuraisA cana-de-açúcar é uma importante cultura semi-perene em regiões tropicais do mundo como a principal fonte de açúcar e bioenergia e o Brasil é seu maior produtor. Como qualquer outra cultura, demanda um aperfeiçoamento prática constante, buscando uma cultura sustentável e com maiores rendimentos e menores custos. Uma das alternativas é a utilização de práticas de agricultura de precisão para explorar a variabilidade espacial dos rendimentos potenciais e para tanto, os mapas de produtividade são essenciais. Para obter os dados necessários para gerar um mapa confiável, é necessário um sistema com capacidade de ler e georreferenciar os dados do sensor e compará-los a uma calibração. No entanto, os resultados das pesquisas mais recentes associadas aos monitores de rendimento comercial, que utilizam apenas um tipo de sensor para determinar os mapas de produtividade, não retratam a exatidão exigida para a cana-de-açúcar. Este estudo teve como objetivo explorar o potencial do uso de dados provenientes de sensores instalados em diferentes partes da colhedora de cana-de-açúcar para determinação e aplicação em monitores de produtividade e determinação de falhas na lavoura. Para fins de comparação foi utilizado um transbordo instrumentado com células de carga para aferição da massa colhida. Foram utilizadas abordagens estatísticas convencionais e inteligência artificial para fusão dos dados e predição da produtividade da cana-de-açúcar, os métodos convencionais foram regressão linear simples e múltipla, e comparado com o método de redes neurais. Além da produtividade foi possível constatar que é possível identificar as falhas na lavoura através dos dados coletados e das falhas produzidas manualmente, todos os sensores medidos identificaram as falhas georeferenciadas. Com relação aos modelos implementados e utilizados, os baseados em regressão linear múltipla não apresentaram potencial na integração e predição da produtividade com os valores de erros definidos nas premissas do trabalho que é de menor que 2%. Além disso os mapas gerados com esses modelos tiveram algumas discrepâncias quanto ao aumento da produtividade em algumas áreas e extração das falhas existentes. Já o modelo de fusão utilizando redes neurais artificiais apresentou uma excelente alternativa para predição da produtividade. Uma vez que a rede é treinada, a mesma apresentou erros inferiores a 2% em todos os mapas gerados. De maneira geral todos os sensores quando avaliados individualmente apresentaram vantagens e desvantagens na determinação da produtividade. Porém, quando fundido os dados dos diversos sensores, as respostas encontradas apresentaram coeficiente de determinação R2 superiores a 95%, RMSE menor que 1kg e RE menor que 2%.Sugarcane is an important semi-perennial crop in tropical regions of the world as the main source of sugar and bioenergy, and Brazil is its largest producer. Like any other culture, it demands constant improvement in practice, seeking a sustainable culture with higher yields and lower costs. One of the alternatives is the use of precision farming practices to explore the spatial variability of potential yields and for that, productivity maps are essential. To obtain the data needed to generate a reliable map, a system is required that is capable of reading and georeferencing the sensor data and comparing them to a calibration. However, the results of the most recent surveys associated with commercial yield monitors, which use only one type of sensor to determine productivity maps, do not depict the exactitude required for sugarcane. This study aimed to explore the potential of using data from sensors installed in different parts of the sugarcane harvester for determination and application in productivity monitors and determination of crop failure, for comparison purposes a transhipment was used instrumented with load cells to measure the mass harvested. We used conventional statistical approaches and artificial intelligence for data fusion and prediction of sugarcane productivity, conventional methods were simple and multiple linear regression, and compared with the neural network method. In addition to productivity, it was possible to verify that it is possible to identify crop failures through the data collected and the failures produced manually, all the measured sensors identified georeferenced faults. Regarding the implemented and used models, those based on multiple linear regression did not present potential in the integration and prediction of productivity with the values of errors defined in the assumptions of the work that is less than 2%. In addition, the maps generated with these models had some discrepancies regarding productivity increase in some areas and extraction of existing flaws. On the other hand, the model of fusion using artificial neural networks presented an excellent alternative for prediction of productivity; since the network is trained the same one presented in all the generated maps errors inferior to 2%. In a general way all the sensors when evaluated individually presented advantages and disadvantages in determining the productivity, but when fused the data of the various sensors the answers found of coefficient of determination R2 higher than 95%, RMSE less than 1kg and RE less than 2%.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloLima, Jeovano de Jesus Alves de2019-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-24052019-150046/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:56:46Zoai:teses.usp.br:tde-24052019-150046Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:56:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
Fusion of sensors to obtain a yield data for sugarcane harvesters
title Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
spellingShingle Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
Lima, Jeovano de Jesus Alves de
Agricultura de precisão
Artificial neural network
Fusão de sensores
Fusion of sensors
Precision agriculture
Redes neurais
title_short Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
title_full Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
title_fullStr Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
title_full_unstemmed Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
title_sort Fusão de sensores para obtenção de dados de produtividade em colhedora de cana-de-açúcar
author Lima, Jeovano de Jesus Alves de
author_facet Lima, Jeovano de Jesus Alves de
author_role author
dc.contributor.none.fl_str_mv Molin, Jose Paulo
dc.contributor.author.fl_str_mv Lima, Jeovano de Jesus Alves de
dc.subject.por.fl_str_mv Agricultura de precisão
Artificial neural network
Fusão de sensores
Fusion of sensors
Precision agriculture
Redes neurais
topic Agricultura de precisão
Artificial neural network
Fusão de sensores
Fusion of sensors
Precision agriculture
Redes neurais
description A cana-de-açúcar é uma importante cultura semi-perene em regiões tropicais do mundo como a principal fonte de açúcar e bioenergia e o Brasil é seu maior produtor. Como qualquer outra cultura, demanda um aperfeiçoamento prática constante, buscando uma cultura sustentável e com maiores rendimentos e menores custos. Uma das alternativas é a utilização de práticas de agricultura de precisão para explorar a variabilidade espacial dos rendimentos potenciais e para tanto, os mapas de produtividade são essenciais. Para obter os dados necessários para gerar um mapa confiável, é necessário um sistema com capacidade de ler e georreferenciar os dados do sensor e compará-los a uma calibração. No entanto, os resultados das pesquisas mais recentes associadas aos monitores de rendimento comercial, que utilizam apenas um tipo de sensor para determinar os mapas de produtividade, não retratam a exatidão exigida para a cana-de-açúcar. Este estudo teve como objetivo explorar o potencial do uso de dados provenientes de sensores instalados em diferentes partes da colhedora de cana-de-açúcar para determinação e aplicação em monitores de produtividade e determinação de falhas na lavoura. Para fins de comparação foi utilizado um transbordo instrumentado com células de carga para aferição da massa colhida. Foram utilizadas abordagens estatísticas convencionais e inteligência artificial para fusão dos dados e predição da produtividade da cana-de-açúcar, os métodos convencionais foram regressão linear simples e múltipla, e comparado com o método de redes neurais. Além da produtividade foi possível constatar que é possível identificar as falhas na lavoura através dos dados coletados e das falhas produzidas manualmente, todos os sensores medidos identificaram as falhas georeferenciadas. Com relação aos modelos implementados e utilizados, os baseados em regressão linear múltipla não apresentaram potencial na integração e predição da produtividade com os valores de erros definidos nas premissas do trabalho que é de menor que 2%. Além disso os mapas gerados com esses modelos tiveram algumas discrepâncias quanto ao aumento da produtividade em algumas áreas e extração das falhas existentes. Já o modelo de fusão utilizando redes neurais artificiais apresentou uma excelente alternativa para predição da produtividade. Uma vez que a rede é treinada, a mesma apresentou erros inferiores a 2% em todos os mapas gerados. De maneira geral todos os sensores quando avaliados individualmente apresentaram vantagens e desvantagens na determinação da produtividade. Porém, quando fundido os dados dos diversos sensores, as respostas encontradas apresentaram coeficiente de determinação R2 superiores a 95%, RMSE menor que 1kg e RE menor que 2%.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-24052019-150046/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-24052019-150046/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257305020628992