Reconstruction of sparse network dynamics from data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/ |
Resumo: | Complex network dynamics are prevalent in various natural systems, spanning from physics to neuroscience. These networks feature sparse interaction structures, where only a fraction of all possible connections exist. This interaction structure provides valuable insights into network dynamics. For instance, disruptions in neuronal networks often arise from issues related to connectivity. However, in experimental settings, we typically have access to multivariate time series data rather than the network itself. Our primary goal is to develop methods for predicting and anticipating potential new behaviors within the system. This thesis is dedicated to reconstructing governing equations that describe the dynamics of sparse networks from data. We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit (EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction while robustly identifying the interaction structure from experimental data, thereby revealing the original network structure. Subsequently, we demonstrate the applicability of this method to clustered networks. By leveraging cluster information within the network, EBP adopts a divideand- conquer reconstruction approach. The network reconstruction is divided into subproblems, each restricted to a specific cluster and solved independently. The solutions are then combined to reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct governing equations from the dynamics of bursting networks. |
id |
USP_326ab8d64168d41eead523b62c5cd9be |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21032024-191639 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Reconstruction of sparse network dynamics from dataReconstrução de dinâmica de redes esparsas a partir de dadosDinâmica de redesDynamical systemsErgodic theoryMétodos de recuperação esparsaNetwork dynamicsRedes esparsasSistemas dinâmicosSparse networksSparse recovery methodsTeoria ergódicaComplex network dynamics are prevalent in various natural systems, spanning from physics to neuroscience. These networks feature sparse interaction structures, where only a fraction of all possible connections exist. This interaction structure provides valuable insights into network dynamics. For instance, disruptions in neuronal networks often arise from issues related to connectivity. However, in experimental settings, we typically have access to multivariate time series data rather than the network itself. Our primary goal is to develop methods for predicting and anticipating potential new behaviors within the system. This thesis is dedicated to reconstructing governing equations that describe the dynamics of sparse networks from data. We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit (EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction while robustly identifying the interaction structure from experimental data, thereby revealing the original network structure. Subsequently, we demonstrate the applicability of this method to clustered networks. By leveraging cluster information within the network, EBP adopts a divideand- conquer reconstruction approach. The network reconstruction is divided into subproblems, each restricted to a specific cluster and solved independently. The solutions are then combined to reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct governing equations from the dynamics of bursting networks.As dinâmicas de redes complexas são comuns em diversos sistemas naturais, abrangendo desde a física até a neurociência. Essas redes apresentam estruturas de interação esparsas, onde apenas uma fração de todas as conexões possíveis existe. Essa estrutura de interação fornece valiosas perspectivas sobre a dinâmica das redes. Por exemplo, interrupções nas redes neuronais frequentemente resultam de problemas relacionados à conectividade. No entanto, em configurações experimentais, geralmente temos acesso a dados de séries temporais multivariadas em vez da própria rede. Nosso objetivo principal é desenvolver métodos para prever e antecipar possíveis novos comportamentos dentro do sistema. Esta tese é dedicada à reconstrução de equações de movimento que descrevem a dinâmica de redes esparsas a partir de dados. Combinamos teoria de sistemas dinâmicos e teoria ergódica com métodos de recuperação esparsa para garantir uma reconstrução exata e única. Para começar, introduzimos um método chamado Ergodic Basis Pursuit (EBP). Este método minimiza os dados de medição necessários, garantindo uma reconstrução precisa, enquanto identifica robustamente a estrutura de interação a partir de dados experimentais, revelando assim a estrutura original da rede. Posteriormente, demonstramos a aplicabilidade deste método redes com clusters. Aproveitando as informações de clusters da rede, o EBP adota uma abordagem de reconstrução dividir-e-conquistar. A reconstrução da rede é dividida em subproblemas, cada um restrito a um cluster específico e resolvido independentemente. As soluções são então combinadas para revelar a estrutura completa da rede. Por fim, empregamos métodos de recuperação esparsa para reconstruir equações de movimento a partir da dinâmica de redes com bursting.Biblioteca Digitais de Teses e Dissertações da USPSilva, Tiago Pereira daSantos, Edmilson Roque dos2024-01-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-21T22:22:03Zoai:teses.usp.br:tde-21032024-191639Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-21T22:22:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Reconstruction of sparse network dynamics from data Reconstrução de dinâmica de redes esparsas a partir de dados |
title |
Reconstruction of sparse network dynamics from data |
spellingShingle |
Reconstruction of sparse network dynamics from data Santos, Edmilson Roque dos Dinâmica de redes Dynamical systems Ergodic theory Métodos de recuperação esparsa Network dynamics Redes esparsas Sistemas dinâmicos Sparse networks Sparse recovery methods Teoria ergódica |
title_short |
Reconstruction of sparse network dynamics from data |
title_full |
Reconstruction of sparse network dynamics from data |
title_fullStr |
Reconstruction of sparse network dynamics from data |
title_full_unstemmed |
Reconstruction of sparse network dynamics from data |
title_sort |
Reconstruction of sparse network dynamics from data |
author |
Santos, Edmilson Roque dos |
author_facet |
Santos, Edmilson Roque dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Tiago Pereira da |
dc.contributor.author.fl_str_mv |
Santos, Edmilson Roque dos |
dc.subject.por.fl_str_mv |
Dinâmica de redes Dynamical systems Ergodic theory Métodos de recuperação esparsa Network dynamics Redes esparsas Sistemas dinâmicos Sparse networks Sparse recovery methods Teoria ergódica |
topic |
Dinâmica de redes Dynamical systems Ergodic theory Métodos de recuperação esparsa Network dynamics Redes esparsas Sistemas dinâmicos Sparse networks Sparse recovery methods Teoria ergódica |
description |
Complex network dynamics are prevalent in various natural systems, spanning from physics to neuroscience. These networks feature sparse interaction structures, where only a fraction of all possible connections exist. This interaction structure provides valuable insights into network dynamics. For instance, disruptions in neuronal networks often arise from issues related to connectivity. However, in experimental settings, we typically have access to multivariate time series data rather than the network itself. Our primary goal is to develop methods for predicting and anticipating potential new behaviors within the system. This thesis is dedicated to reconstructing governing equations that describe the dynamics of sparse networks from data. We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit (EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction while robustly identifying the interaction structure from experimental data, thereby revealing the original network structure. Subsequently, we demonstrate the applicability of this method to clustered networks. By leveraging cluster information within the network, EBP adopts a divideand- conquer reconstruction approach. The network reconstruction is divided into subproblems, each restricted to a specific cluster and solved independently. The solutions are then combined to reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct governing equations from the dynamics of bursting networks. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257237919105024 |