Reconstruction of sparse network dynamics from data

Detalhes bibliográficos
Autor(a) principal: Santos, Edmilson Roque dos
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/
Resumo: Complex network dynamics are prevalent in various natural systems, spanning from physics to neuroscience. These networks feature sparse interaction structures, where only a fraction of all possible connections exist. This interaction structure provides valuable insights into network dynamics. For instance, disruptions in neuronal networks often arise from issues related to connectivity. However, in experimental settings, we typically have access to multivariate time series data rather than the network itself. Our primary goal is to develop methods for predicting and anticipating potential new behaviors within the system. This thesis is dedicated to reconstructing governing equations that describe the dynamics of sparse networks from data. We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit (EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction while robustly identifying the interaction structure from experimental data, thereby revealing the original network structure. Subsequently, we demonstrate the applicability of this method to clustered networks. By leveraging cluster information within the network, EBP adopts a divideand- conquer reconstruction approach. The network reconstruction is divided into subproblems, each restricted to a specific cluster and solved independently. The solutions are then combined to reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct governing equations from the dynamics of bursting networks.
id USP_326ab8d64168d41eead523b62c5cd9be
oai_identifier_str oai:teses.usp.br:tde-21032024-191639
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Reconstruction of sparse network dynamics from dataReconstrução de dinâmica de redes esparsas a partir de dadosDinâmica de redesDynamical systemsErgodic theoryMétodos de recuperação esparsaNetwork dynamicsRedes esparsasSistemas dinâmicosSparse networksSparse recovery methodsTeoria ergódicaComplex network dynamics are prevalent in various natural systems, spanning from physics to neuroscience. These networks feature sparse interaction structures, where only a fraction of all possible connections exist. This interaction structure provides valuable insights into network dynamics. For instance, disruptions in neuronal networks often arise from issues related to connectivity. However, in experimental settings, we typically have access to multivariate time series data rather than the network itself. Our primary goal is to develop methods for predicting and anticipating potential new behaviors within the system. This thesis is dedicated to reconstructing governing equations that describe the dynamics of sparse networks from data. We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit (EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction while robustly identifying the interaction structure from experimental data, thereby revealing the original network structure. Subsequently, we demonstrate the applicability of this method to clustered networks. By leveraging cluster information within the network, EBP adopts a divideand- conquer reconstruction approach. The network reconstruction is divided into subproblems, each restricted to a specific cluster and solved independently. The solutions are then combined to reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct governing equations from the dynamics of bursting networks.As dinâmicas de redes complexas são comuns em diversos sistemas naturais, abrangendo desde a física até a neurociência. Essas redes apresentam estruturas de interação esparsas, onde apenas uma fração de todas as conexões possíveis existe. Essa estrutura de interação fornece valiosas perspectivas sobre a dinâmica das redes. Por exemplo, interrupções nas redes neuronais frequentemente resultam de problemas relacionados à conectividade. No entanto, em configurações experimentais, geralmente temos acesso a dados de séries temporais multivariadas em vez da própria rede. Nosso objetivo principal é desenvolver métodos para prever e antecipar possíveis novos comportamentos dentro do sistema. Esta tese é dedicada à reconstrução de equações de movimento que descrevem a dinâmica de redes esparsas a partir de dados. Combinamos teoria de sistemas dinâmicos e teoria ergódica com métodos de recuperação esparsa para garantir uma reconstrução exata e única. Para começar, introduzimos um método chamado Ergodic Basis Pursuit (EBP). Este método minimiza os dados de medição necessários, garantindo uma reconstrução precisa, enquanto identifica robustamente a estrutura de interação a partir de dados experimentais, revelando assim a estrutura original da rede. Posteriormente, demonstramos a aplicabilidade deste método redes com clusters. Aproveitando as informações de clusters da rede, o EBP adota uma abordagem de reconstrução dividir-e-conquistar. A reconstrução da rede é dividida em subproblemas, cada um restrito a um cluster específico e resolvido independentemente. As soluções são então combinadas para revelar a estrutura completa da rede. Por fim, empregamos métodos de recuperação esparsa para reconstruir equações de movimento a partir da dinâmica de redes com bursting.Biblioteca Digitais de Teses e Dissertações da USPSilva, Tiago Pereira daSantos, Edmilson Roque dos2024-01-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-21T22:22:03Zoai:teses.usp.br:tde-21032024-191639Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-21T22:22:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Reconstruction of sparse network dynamics from data
Reconstrução de dinâmica de redes esparsas a partir de dados
title Reconstruction of sparse network dynamics from data
spellingShingle Reconstruction of sparse network dynamics from data
Santos, Edmilson Roque dos
Dinâmica de redes
Dynamical systems
Ergodic theory
Métodos de recuperação esparsa
Network dynamics
Redes esparsas
Sistemas dinâmicos
Sparse networks
Sparse recovery methods
Teoria ergódica
title_short Reconstruction of sparse network dynamics from data
title_full Reconstruction of sparse network dynamics from data
title_fullStr Reconstruction of sparse network dynamics from data
title_full_unstemmed Reconstruction of sparse network dynamics from data
title_sort Reconstruction of sparse network dynamics from data
author Santos, Edmilson Roque dos
author_facet Santos, Edmilson Roque dos
author_role author
dc.contributor.none.fl_str_mv Silva, Tiago Pereira da
dc.contributor.author.fl_str_mv Santos, Edmilson Roque dos
dc.subject.por.fl_str_mv Dinâmica de redes
Dynamical systems
Ergodic theory
Métodos de recuperação esparsa
Network dynamics
Redes esparsas
Sistemas dinâmicos
Sparse networks
Sparse recovery methods
Teoria ergódica
topic Dinâmica de redes
Dynamical systems
Ergodic theory
Métodos de recuperação esparsa
Network dynamics
Redes esparsas
Sistemas dinâmicos
Sparse networks
Sparse recovery methods
Teoria ergódica
description Complex network dynamics are prevalent in various natural systems, spanning from physics to neuroscience. These networks feature sparse interaction structures, where only a fraction of all possible connections exist. This interaction structure provides valuable insights into network dynamics. For instance, disruptions in neuronal networks often arise from issues related to connectivity. However, in experimental settings, we typically have access to multivariate time series data rather than the network itself. Our primary goal is to develop methods for predicting and anticipating potential new behaviors within the system. This thesis is dedicated to reconstructing governing equations that describe the dynamics of sparse networks from data. We merge dynamical systems theory and ergodic theory with sparse recovery methods to ensure exact and unique reconstruction. To begin, we introduce a method called Ergodic Basis Pursuit (EBP). This method minimizes the required measurement data, guaranteeing exact reconstruction while robustly identifying the interaction structure from experimental data, thereby revealing the original network structure. Subsequently, we demonstrate the applicability of this method to clustered networks. By leveraging cluster information within the network, EBP adopts a divideand- conquer reconstruction approach. The network reconstruction is divided into subproblems, each restricted to a specific cluster and solved independently. The solutions are then combined to reveal the complete network structure. Finally, we employ sparse recovery methods to reconstruct governing equations from the dynamics of bursting networks.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257237919105024