Hydrological modeling of soil-water availability in the Caatinga biome

Detalhes bibliográficos
Autor(a) principal: Pinheiro, Everton Alves Rodrigues
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-10112016-170843/
Resumo: Northeastern Brazil is hydrologically characterized by recurrent droughts leading to a highly vulnerable natural water resource system. The region contains the Caatinga biome, a sparsely studied ecosystem, covering an area of approximately 800,000 km2. Reduced wateravailability is projected to take place in large regions of the globe, including Northeastern Brazil. Given the strong interactions between climate and vegetation, research has addressed climate change effects on natural and agricultural ecosystems. In this context, soil hydraulic properties are essential to assess soil water flow, and thus the ability of soil to supply water to plants at potential rates under different ranges of pressure head. Based on that, the aims of this thesis are: to increase insight in water balance components for the Caatinga biome, under current and future climate scenarios; and to assess the ability of soils in supplying water to plants by the further development of an existing matric flux potential approach, followed by its application to a group of soils from two Brazilian climatic zones (semi-arid and subhumid). Both for current and future climate scenarios, hydrological simulations were performed with SWAP model parameterized for a preserved Caatinga basin of 12 km2. The validation of the simulations was performed using a dataset of daily soil-water content measurements taken at 0.2 m depth in the period from 2004 to 2012. The soil water supplying capacity was evaluated through a multilayer matric flux potential approach, coupling the soil hydraulic properties, root length density and plant transpiration. Regarding the current climate conditions, the Caatinga biome returns 75% of the annual precipitation to the atmosphere, whereas the partitioning of total evapotranspiration into its components (transpiration, evaporation and interception) on annual basis accounts for 41%, 40% and 19%, respectively. Evapotranspiration and air temperature are most sensitive to soil moisture during the periods June-September and December-January. Concerning the future climate, transpiration was enhanced by 36%, soil evaporation and interception losses reduced by 16% and 34%, respectively. The amount of precipitation returned to the atmosphere was on average 98%. For both climate scenarios, the soil-plant-atmosphere fluxes seem to be controlled by the surface soil layer (0-0.2 m) which provides, on average, 80% of the total transpiration, suggesting that the Caatinga biome may become completely soil-water pulse dominated under scenarios of reduced water availability. The matric flux potential analysis revealed that soils from the semiarid zone were able to deliver water to plants at potential rates under a wider range of bulk soil pressure head (-36 to -148 m), whereas the soils from the wetter zone showed more hydraulic restriction with limiting soil water potential above -1.5 m. For the analyzed soils, only a negligible increase in available water results from decreasing the root water potential below -150 m, therefore, in order to adapt to water-limited conditions, plant species may invest in other adaptive strategies, rather than spending energy in structures that allow a reduction of the lower suction limit in their tissues.
id USP_326deb5ff5123663652b708502418bf6
oai_identifier_str oai:teses.usp.br:tde-10112016-170843
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Hydrological modeling of soil-water availability in the Caatinga biomeModelagem hidrológica da disponibilidade da água do solo no bioma CaatingaBalanço hídricoClimate changeEvapotranspiraçãoEvapotranspirationMudanças climáticasSemiarid environmentSemiáridoSWAPSWAPWater balanceNortheastern Brazil is hydrologically characterized by recurrent droughts leading to a highly vulnerable natural water resource system. The region contains the Caatinga biome, a sparsely studied ecosystem, covering an area of approximately 800,000 km2. Reduced wateravailability is projected to take place in large regions of the globe, including Northeastern Brazil. Given the strong interactions between climate and vegetation, research has addressed climate change effects on natural and agricultural ecosystems. In this context, soil hydraulic properties are essential to assess soil water flow, and thus the ability of soil to supply water to plants at potential rates under different ranges of pressure head. Based on that, the aims of this thesis are: to increase insight in water balance components for the Caatinga biome, under current and future climate scenarios; and to assess the ability of soils in supplying water to plants by the further development of an existing matric flux potential approach, followed by its application to a group of soils from two Brazilian climatic zones (semi-arid and subhumid). Both for current and future climate scenarios, hydrological simulations were performed with SWAP model parameterized for a preserved Caatinga basin of 12 km2. The validation of the simulations was performed using a dataset of daily soil-water content measurements taken at 0.2 m depth in the period from 2004 to 2012. The soil water supplying capacity was evaluated through a multilayer matric flux potential approach, coupling the soil hydraulic properties, root length density and plant transpiration. Regarding the current climate conditions, the Caatinga biome returns 75% of the annual precipitation to the atmosphere, whereas the partitioning of total evapotranspiration into its components (transpiration, evaporation and interception) on annual basis accounts for 41%, 40% and 19%, respectively. Evapotranspiration and air temperature are most sensitive to soil moisture during the periods June-September and December-January. Concerning the future climate, transpiration was enhanced by 36%, soil evaporation and interception losses reduced by 16% and 34%, respectively. The amount of precipitation returned to the atmosphere was on average 98%. For both climate scenarios, the soil-plant-atmosphere fluxes seem to be controlled by the surface soil layer (0-0.2 m) which provides, on average, 80% of the total transpiration, suggesting that the Caatinga biome may become completely soil-water pulse dominated under scenarios of reduced water availability. The matric flux potential analysis revealed that soils from the semiarid zone were able to deliver water to plants at potential rates under a wider range of bulk soil pressure head (-36 to -148 m), whereas the soils from the wetter zone showed more hydraulic restriction with limiting soil water potential above -1.5 m. For the analyzed soils, only a negligible increase in available water results from decreasing the root water potential below -150 m, therefore, in order to adapt to water-limited conditions, plant species may invest in other adaptive strategies, rather than spending energy in structures that allow a reduction of the lower suction limit in their tissues.O Nordeste do Brasil é hidrologicamente caracterizado por secas recorrentes, tornando os recursos hídricos naturais altamente vulneráveis. Nesta região está o bioma Caatinga, ocupando uma área de aproximadamente 800.000 km2. Cenários de déficit hídrico são projetados para grandes regiões do globo, incluindo o Nordeste brasileiro. Devido às interações entre clima e vegetação, várias pesquisas têm abordado os efeitos das mudanças climáticas sobre os ecossistemas naturais e agrícolas. Neste contexto, as propriedades hidráulicas do solo são essenciais para avaliar o movimento de água, e assim a capacidade de fornecimento de água às plantas. Com base nesta contextualização, os objetivos desta tese são: simular os componentes do balanço hídrico do bioma Caatinga para cenários climáticos atuais e futuros; e avaliar a capacidade de alguns solos em fornecer água às plantas a partir de uma abordagem de potencial de fluxo matricial. Para os cenários climáticos atuais e futuros, simulações hidrológicas foram realizadas com o modelo SWAP, parametrizado para uma microbacia de 12 km2, inserida em área de Caatinga preservada. A validação das simulações foi processada a partir de medidas diárias do conteúdo de água do solo na profundidade de 0,2 m no período de 2004 a 2012. A capacidade do solo em fornecer água às plantas foi avaliada através da atualização de uma função de potencial de fluxo matricial, que acopla as propriedades hidráulicas do solo, densidade de comprimento radicular e transpiração das plantas, aplicada a um grupo de solos da zona climática semiárida e sub-úmida. Como resultados principais destacam-se: nas condições climáticas atuais, o bioma Caatinga retorna 75% da precipitação anual para a atmosfera como evapotranspiração, particionada entre seus componentes (transpiração, evaporação e intercepção) em 41%, 40% e 19%, respectivamente. Evapotranspiração e temperatura do ar foram sensíveis à umidade do solo durante os períodos de junho-setembro e dezembro-janeiro. Em relação ao cenário climático futuro, a taxa de transpiração foi acrescida em 36%. A evaporação do solo e a interceptação foram reduzidas em 16% e 34%, respectivamente. A quantidade de precipitação devolvida para a atmosfera foi em média 98%. Para ambos os cenários climáticos, é sugerido que os fluxos de água no sistema solo-planta-atmosfera são controlados pela camada superior do solo (0-0,2 m), fornecendo, em média, 80% do total transpirado, indicando que, caso os cenários de disponibilidade hídrica reduzida se confirmem, o bioma Caatinga pode se tornar completamente dependente dos pulsos de água no solo. A partir do potencial de fluxo matricial limitante revelou-se que os solos da região semiárida são capazes de manter o fluxo de água às plantas em taxas potenciais em condições de solo seco (potencial matricial limitante variando de -36 a -148 m), enquanto que, os solos da região mais úmida indicaram severa restrição hidráulica, com potencial matricial limitante maior do que -1,5 m. Ainda para os solos analisados, a atribuição de potencial na superfície da raiz inferior a -150 m não ocasionou aumento de disponibilidade hídrica, indicando que valores menores que -150 m não implicam em uma estratégia viável para suportar baixa disponibilidade hídrica.Biblioteca Digitais de Teses e Dissertações da USPLier, Quirijn de Jong vanPinheiro, Everton Alves Rodrigues2016-10-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-10112016-170843/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:03:48Zoai:teses.usp.br:tde-10112016-170843Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Hydrological modeling of soil-water availability in the Caatinga biome
Modelagem hidrológica da disponibilidade da água do solo no bioma Caatinga
title Hydrological modeling of soil-water availability in the Caatinga biome
spellingShingle Hydrological modeling of soil-water availability in the Caatinga biome
Pinheiro, Everton Alves Rodrigues
Balanço hídrico
Climate change
Evapotranspiração
Evapotranspiration
Mudanças climáticas
Semiarid environment
Semiárido
SWAP
SWAP
Water balance
title_short Hydrological modeling of soil-water availability in the Caatinga biome
title_full Hydrological modeling of soil-water availability in the Caatinga biome
title_fullStr Hydrological modeling of soil-water availability in the Caatinga biome
title_full_unstemmed Hydrological modeling of soil-water availability in the Caatinga biome
title_sort Hydrological modeling of soil-water availability in the Caatinga biome
author Pinheiro, Everton Alves Rodrigues
author_facet Pinheiro, Everton Alves Rodrigues
author_role author
dc.contributor.none.fl_str_mv Lier, Quirijn de Jong van
dc.contributor.author.fl_str_mv Pinheiro, Everton Alves Rodrigues
dc.subject.por.fl_str_mv Balanço hídrico
Climate change
Evapotranspiração
Evapotranspiration
Mudanças climáticas
Semiarid environment
Semiárido
SWAP
SWAP
Water balance
topic Balanço hídrico
Climate change
Evapotranspiração
Evapotranspiration
Mudanças climáticas
Semiarid environment
Semiárido
SWAP
SWAP
Water balance
description Northeastern Brazil is hydrologically characterized by recurrent droughts leading to a highly vulnerable natural water resource system. The region contains the Caatinga biome, a sparsely studied ecosystem, covering an area of approximately 800,000 km2. Reduced wateravailability is projected to take place in large regions of the globe, including Northeastern Brazil. Given the strong interactions between climate and vegetation, research has addressed climate change effects on natural and agricultural ecosystems. In this context, soil hydraulic properties are essential to assess soil water flow, and thus the ability of soil to supply water to plants at potential rates under different ranges of pressure head. Based on that, the aims of this thesis are: to increase insight in water balance components for the Caatinga biome, under current and future climate scenarios; and to assess the ability of soils in supplying water to plants by the further development of an existing matric flux potential approach, followed by its application to a group of soils from two Brazilian climatic zones (semi-arid and subhumid). Both for current and future climate scenarios, hydrological simulations were performed with SWAP model parameterized for a preserved Caatinga basin of 12 km2. The validation of the simulations was performed using a dataset of daily soil-water content measurements taken at 0.2 m depth in the period from 2004 to 2012. The soil water supplying capacity was evaluated through a multilayer matric flux potential approach, coupling the soil hydraulic properties, root length density and plant transpiration. Regarding the current climate conditions, the Caatinga biome returns 75% of the annual precipitation to the atmosphere, whereas the partitioning of total evapotranspiration into its components (transpiration, evaporation and interception) on annual basis accounts for 41%, 40% and 19%, respectively. Evapotranspiration and air temperature are most sensitive to soil moisture during the periods June-September and December-January. Concerning the future climate, transpiration was enhanced by 36%, soil evaporation and interception losses reduced by 16% and 34%, respectively. The amount of precipitation returned to the atmosphere was on average 98%. For both climate scenarios, the soil-plant-atmosphere fluxes seem to be controlled by the surface soil layer (0-0.2 m) which provides, on average, 80% of the total transpiration, suggesting that the Caatinga biome may become completely soil-water pulse dominated under scenarios of reduced water availability. The matric flux potential analysis revealed that soils from the semiarid zone were able to deliver water to plants at potential rates under a wider range of bulk soil pressure head (-36 to -148 m), whereas the soils from the wetter zone showed more hydraulic restriction with limiting soil water potential above -1.5 m. For the analyzed soils, only a negligible increase in available water results from decreasing the root water potential below -150 m, therefore, in order to adapt to water-limited conditions, plant species may invest in other adaptive strategies, rather than spending energy in structures that allow a reduction of the lower suction limit in their tissues.
publishDate 2016
dc.date.none.fl_str_mv 2016-10-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-10112016-170843/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-10112016-170843/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090595958816768