Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-04022020-171110/ |
Resumo: | A distribuição Poisson é amplamente utilizada para modelar dados de contagem, no entanto tem como desvantagem a suposição de que os dados precisam ter média e variância iguais, o que nem sempre é verdade, pois em muitas situações é comum o fenômeno de sobredispersão (variância maior do que a média) ou subdispersão (variância menor do que a média). Desta forma, trabalhamos com a distribuição hiper-Poisson, que permite analisar dados com sobredispersão ou subdispersão. O modelo hiper-Poisson é investigado aqui em dois cenários distintos, primeiramente modelando variáveis aleatórias observáveis em problemas de contagem, e em um segundo momento representando uma variável não observável (latente) utilizada em modelos de análise de sobrevivência. No primeiro cenário, realizamos uma abordagem clássica para a estimação dos parâmetros da distribuição hiper-Poisson e empregamos o usual teste da razão de verossimilhanças, juntamente com o teste gradiente para testar o parâmetro de dispersão do modelo. Por outro lado, na análise de sobrevivência, propomos um novo modelo com fração de cura induzido por fragilidade discreta com distribuição de probabilidade hiper-Poisson, uma vez que é importante a escolha de uma distribuição que leve em conta a dispersão dos fatores de risco. Para este novo modelo desenvolvemos procedimentos inferenciais sob as perspectivas clássica e bayesiana. Todos os modelos trabalhados foram analisados por meio de estudos de simulação e aplicados a conjuntos de dados reais. |
id |
USP_327c4d88c48f0d62cd6fe38003d7537f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04022020-171110 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveisHyper-Poisson dispersion model for observable and unobservable discrete variablesAlgoritmo EMBayesian inferenceCure rate modelsDistribuição hiper-PoissonEM-algorithmFrailty modelsGradient testHyper-Poisson distributionInferência bayesianaModelos com fração de curaModelos de fragilidadeTeste gradienteA distribuição Poisson é amplamente utilizada para modelar dados de contagem, no entanto tem como desvantagem a suposição de que os dados precisam ter média e variância iguais, o que nem sempre é verdade, pois em muitas situações é comum o fenômeno de sobredispersão (variância maior do que a média) ou subdispersão (variância menor do que a média). Desta forma, trabalhamos com a distribuição hiper-Poisson, que permite analisar dados com sobredispersão ou subdispersão. O modelo hiper-Poisson é investigado aqui em dois cenários distintos, primeiramente modelando variáveis aleatórias observáveis em problemas de contagem, e em um segundo momento representando uma variável não observável (latente) utilizada em modelos de análise de sobrevivência. No primeiro cenário, realizamos uma abordagem clássica para a estimação dos parâmetros da distribuição hiper-Poisson e empregamos o usual teste da razão de verossimilhanças, juntamente com o teste gradiente para testar o parâmetro de dispersão do modelo. Por outro lado, na análise de sobrevivência, propomos um novo modelo com fração de cura induzido por fragilidade discreta com distribuição de probabilidade hiper-Poisson, uma vez que é importante a escolha de uma distribuição que leve em conta a dispersão dos fatores de risco. Para este novo modelo desenvolvemos procedimentos inferenciais sob as perspectivas clássica e bayesiana. Todos os modelos trabalhados foram analisados por meio de estudos de simulação e aplicados a conjuntos de dados reais.Poisson distribution is widely used to model count data, however it has the disadvantage the assumption that the data must have equal mean and variance, which is not always true, since in many situations the phenomenon of overdispersion (variance greater than average) or underdispersion (variance lower than average) is common. Thus, we work with the hyper-Poisson distribution, which may accomodate data with overdispersion or underdispersion. The hyper- Poisson model is investigated here in two distinct scenarios, first modeling observable random variables in counting problems, and secondly representing an unobservable (latent) variable used in survival analysis models. In the first scenario, we take a classic approach for the estimation of the parameters of the hyper-Poisson distribution and we developed the usual likelihood ratio test, together with the gradient test to test the model dispersion parameter. In the survival analysis, we propose a new cure rate model induced by frailty discrete with hyper-Poisson probability distribution, since it is important to choose a distribution that takes into account the dispersion of risk factors. For this new model we developed inferential procedures from the classical and bayesian perspectives. All the models worked were analyzed through simulation studies and applied to real data sets.Biblioteca Digitais de Teses e Dissertações da USPCancho, Vicente GaribayRodrigues, JosemarSantos, Daiane de Souza2019-12-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-04022020-171110/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-02-04T22:50:02Zoai:teses.usp.br:tde-04022020-171110Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-04T22:50:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis Hyper-Poisson dispersion model for observable and unobservable discrete variables |
title |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis |
spellingShingle |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis Santos, Daiane de Souza Algoritmo EM Bayesian inference Cure rate models Distribuição hiper-Poisson EM-algorithm Frailty models Gradient test Hyper-Poisson distribution Inferência bayesiana Modelos com fração de cura Modelos de fragilidade Teste gradiente |
title_short |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis |
title_full |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis |
title_fullStr |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis |
title_full_unstemmed |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis |
title_sort |
Modelo de dispersão hiper-Poisson para variáveis discretas observáveis e não observáveis |
author |
Santos, Daiane de Souza |
author_facet |
Santos, Daiane de Souza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cancho, Vicente Garibay Rodrigues, Josemar |
dc.contributor.author.fl_str_mv |
Santos, Daiane de Souza |
dc.subject.por.fl_str_mv |
Algoritmo EM Bayesian inference Cure rate models Distribuição hiper-Poisson EM-algorithm Frailty models Gradient test Hyper-Poisson distribution Inferência bayesiana Modelos com fração de cura Modelos de fragilidade Teste gradiente |
topic |
Algoritmo EM Bayesian inference Cure rate models Distribuição hiper-Poisson EM-algorithm Frailty models Gradient test Hyper-Poisson distribution Inferência bayesiana Modelos com fração de cura Modelos de fragilidade Teste gradiente |
description |
A distribuição Poisson é amplamente utilizada para modelar dados de contagem, no entanto tem como desvantagem a suposição de que os dados precisam ter média e variância iguais, o que nem sempre é verdade, pois em muitas situações é comum o fenômeno de sobredispersão (variância maior do que a média) ou subdispersão (variância menor do que a média). Desta forma, trabalhamos com a distribuição hiper-Poisson, que permite analisar dados com sobredispersão ou subdispersão. O modelo hiper-Poisson é investigado aqui em dois cenários distintos, primeiramente modelando variáveis aleatórias observáveis em problemas de contagem, e em um segundo momento representando uma variável não observável (latente) utilizada em modelos de análise de sobrevivência. No primeiro cenário, realizamos uma abordagem clássica para a estimação dos parâmetros da distribuição hiper-Poisson e empregamos o usual teste da razão de verossimilhanças, juntamente com o teste gradiente para testar o parâmetro de dispersão do modelo. Por outro lado, na análise de sobrevivência, propomos um novo modelo com fração de cura induzido por fragilidade discreta com distribuição de probabilidade hiper-Poisson, uma vez que é importante a escolha de uma distribuição que leve em conta a dispersão dos fatores de risco. Para este novo modelo desenvolvemos procedimentos inferenciais sob as perspectivas clássica e bayesiana. Todos os modelos trabalhados foram analisados por meio de estudos de simulação e aplicados a conjuntos de dados reais. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-04022020-171110/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-04022020-171110/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256649502294016 |