Computação por assembleias neurais em redes neurais pulsadas.

Detalhes bibliográficos
Autor(a) principal: Ribeiro, João Henrique Ranhel
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-112119/
Resumo: Um dos grandes mistérios da ciência é compreender como sistemas nervosos são capazes de realizar as extraordinárias operações computacionais que realizam. Provavelmente, encéfalos são as estruturas nas quais energia e matéria estão organizadas da forma mais complexa no universo. Central na computação cerebral está o conceito de neurônio. A forma como neurônios computam é motivo de intensa investigação científica. Um consenso atual é que neurônios formam grupos transientes (assembleias) a fim de representar coisas, de realizar operações computacionais, e de executar processos cognitivos; embora os mecanismos que fundamentam a computação por assembleias ainda não seja bem compreendido. Aqui é proposta uma forma pela qual se explica como computação por assembleias pode acontecer. Dois componentes são fundamentais para formação de coalizões neurais: a relação temporal entre grupos de neurônios e o fator de acoplamento entre eles. Assembleias pressupõe neurônios pulsantes; portanto, simulamos computação por assembleias em redes neurais pulsantes. A abordagem usada nesta tese é funcional; apresentamos um arcabouço teórico sobre propriedades, princípios, e dinâmicas que permitem operações computacionais por coalizões neurais. É apresentado na tese que: (i) quando neurônios formam assembleias está implícito que um tipo de função lógica estocástica ocorre, (ii) assembleias podem formar grupos com feedback, criando grupos biestáveis, (iii) grupos biestáveis criam representações internas dos eventos que os criaram, (iv) assembleias podem se ramificar e também dissolver outras assembleias, o que dá origem a algoritmos complexos. Esta é uma investigação inicial sobre computação em assembleias neurais, e há muito a ser feito. Nesta tese apresentamos os conceitos basais para esta nova abordagem. Há um conjunto de programas nos apêndices que permitem ao leitor simular formações de assembleias, ramificações, inibições, reverberações, entre outras propriedades e componentes de nossa proposta.
id USP_32e5c11879b1a414f56b4c36df8cbf52
oai_identifier_str oai:teses.usp.br:tde-16032012-112119
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Computação por assembleias neurais em redes neurais pulsadas.Computing with neural assemblies in spiking neural networks.Assembléias biestáveisBioinspired computingBistable assembliesCoalizões neuraisComputação bioinspiradaGrupos neurais policronizadosNeural assemblyNeural coalitionNeurocomputingNeurosciencePolychronous groupsSistemas dinâmicosSpiking neural networksSynfire chainsUm dos grandes mistérios da ciência é compreender como sistemas nervosos são capazes de realizar as extraordinárias operações computacionais que realizam. Provavelmente, encéfalos são as estruturas nas quais energia e matéria estão organizadas da forma mais complexa no universo. Central na computação cerebral está o conceito de neurônio. A forma como neurônios computam é motivo de intensa investigação científica. Um consenso atual é que neurônios formam grupos transientes (assembleias) a fim de representar coisas, de realizar operações computacionais, e de executar processos cognitivos; embora os mecanismos que fundamentam a computação por assembleias ainda não seja bem compreendido. Aqui é proposta uma forma pela qual se explica como computação por assembleias pode acontecer. Dois componentes são fundamentais para formação de coalizões neurais: a relação temporal entre grupos de neurônios e o fator de acoplamento entre eles. Assembleias pressupõe neurônios pulsantes; portanto, simulamos computação por assembleias em redes neurais pulsantes. A abordagem usada nesta tese é funcional; apresentamos um arcabouço teórico sobre propriedades, princípios, e dinâmicas que permitem operações computacionais por coalizões neurais. É apresentado na tese que: (i) quando neurônios formam assembleias está implícito que um tipo de função lógica estocástica ocorre, (ii) assembleias podem formar grupos com feedback, criando grupos biestáveis, (iii) grupos biestáveis criam representações internas dos eventos que os criaram, (iv) assembleias podem se ramificar e também dissolver outras assembleias, o que dá origem a algoritmos complexos. Esta é uma investigação inicial sobre computação em assembleias neurais, e há muito a ser feito. Nesta tese apresentamos os conceitos basais para esta nova abordagem. Há um conjunto de programas nos apêndices que permitem ao leitor simular formações de assembleias, ramificações, inibições, reverberações, entre outras propriedades e componentes de nossa proposta.One of the greatest mysteries in science is to comprehend how brains are capable of realizing the extraordinary computational operations they do. Probably, brains are the structures in which matter and energy are organized in the most complex way in the Universe. Central to the brain computation is the concept of neuron. How neurons compute is motive of intensive scientific investigation. A prevailing consensus is that neurons form transient groups (assemblies) in order to represent things, for realizing computational operations, and for executing cognitive processes; although the mechanisms that substantiate such computation by neural assemblies are not yet well understood. In this thesis we propose a form that explains how neural assembly computation may occur. It is shown that two components are fundamentals for neural coalition formation: the temporal relation among neural groups, and the coupling factor among them. In this sense, neural assemblies presuppose spiking neurons; therefore, here we simulate assembly computing using spiking neural networks. In this thesis it is presented basically a functional approach; thus, it presents a theoretical approach concerning the properties, principles, characteristics, and components that allow the computational operations in neural coalitions. It is presented in the thesis that: (i) as neurons form assemblies it is implicit that a kind of stochastic logic function occurs; (ii) assemblies may form groups that feedback each other, creating bistable groups; (iii) bistable groups internally represent the event that created them; (iv) assemblies may branch and dissolve other assemblies, what give rise to complex algorithms. This is an initial investigation about neural assembly computing and there is a lot to be done; however, in this thesis we present the basal concepts for this new approach. There are programs in the appendices that allow the reader to simulate assembly formation, branching, inhibition, reverberation, among other properties and components in our proposal.Biblioteca Digitais de Teses e Dissertações da USPNetto, Marcio Lobo Ribeiro, João Henrique Ranhel2011-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-112119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:31Zoai:teses.usp.br:tde-16032012-112119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:31Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computação por assembleias neurais em redes neurais pulsadas.
Computing with neural assemblies in spiking neural networks.
title Computação por assembleias neurais em redes neurais pulsadas.
spellingShingle Computação por assembleias neurais em redes neurais pulsadas.
Ribeiro, João Henrique Ranhel
Assembléias biestáveis
Bioinspired computing
Bistable assemblies
Coalizões neurais
Computação bioinspirada
Grupos neurais policronizados
Neural assembly
Neural coalition
Neurocomputing
Neuroscience
Polychronous groups
Sistemas dinâmicos
Spiking neural networks
Synfire chains
title_short Computação por assembleias neurais em redes neurais pulsadas.
title_full Computação por assembleias neurais em redes neurais pulsadas.
title_fullStr Computação por assembleias neurais em redes neurais pulsadas.
title_full_unstemmed Computação por assembleias neurais em redes neurais pulsadas.
title_sort Computação por assembleias neurais em redes neurais pulsadas.
author Ribeiro, João Henrique Ranhel
author_facet Ribeiro, João Henrique Ranhel
author_role author
dc.contributor.none.fl_str_mv Netto, Marcio Lobo
dc.contributor.author.fl_str_mv Ribeiro, João Henrique Ranhel
dc.subject.por.fl_str_mv Assembléias biestáveis
Bioinspired computing
Bistable assemblies
Coalizões neurais
Computação bioinspirada
Grupos neurais policronizados
Neural assembly
Neural coalition
Neurocomputing
Neuroscience
Polychronous groups
Sistemas dinâmicos
Spiking neural networks
Synfire chains
topic Assembléias biestáveis
Bioinspired computing
Bistable assemblies
Coalizões neurais
Computação bioinspirada
Grupos neurais policronizados
Neural assembly
Neural coalition
Neurocomputing
Neuroscience
Polychronous groups
Sistemas dinâmicos
Spiking neural networks
Synfire chains
description Um dos grandes mistérios da ciência é compreender como sistemas nervosos são capazes de realizar as extraordinárias operações computacionais que realizam. Provavelmente, encéfalos são as estruturas nas quais energia e matéria estão organizadas da forma mais complexa no universo. Central na computação cerebral está o conceito de neurônio. A forma como neurônios computam é motivo de intensa investigação científica. Um consenso atual é que neurônios formam grupos transientes (assembleias) a fim de representar coisas, de realizar operações computacionais, e de executar processos cognitivos; embora os mecanismos que fundamentam a computação por assembleias ainda não seja bem compreendido. Aqui é proposta uma forma pela qual se explica como computação por assembleias pode acontecer. Dois componentes são fundamentais para formação de coalizões neurais: a relação temporal entre grupos de neurônios e o fator de acoplamento entre eles. Assembleias pressupõe neurônios pulsantes; portanto, simulamos computação por assembleias em redes neurais pulsantes. A abordagem usada nesta tese é funcional; apresentamos um arcabouço teórico sobre propriedades, princípios, e dinâmicas que permitem operações computacionais por coalizões neurais. É apresentado na tese que: (i) quando neurônios formam assembleias está implícito que um tipo de função lógica estocástica ocorre, (ii) assembleias podem formar grupos com feedback, criando grupos biestáveis, (iii) grupos biestáveis criam representações internas dos eventos que os criaram, (iv) assembleias podem se ramificar e também dissolver outras assembleias, o que dá origem a algoritmos complexos. Esta é uma investigação inicial sobre computação em assembleias neurais, e há muito a ser feito. Nesta tese apresentamos os conceitos basais para esta nova abordagem. Há um conjunto de programas nos apêndices que permitem ao leitor simular formações de assembleias, ramificações, inibições, reverberações, entre outras propriedades e componentes de nossa proposta.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-112119/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032012-112119/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257015407083520