Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características

Detalhes bibliográficos
Autor(a) principal: Maletzke, André Gustavo
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/
Resumo: Mineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literatura
id USP_340af5a3b9f70558600ef66cdf4eb983
oai_identifier_str oai:teses.usp.br:tde-04062009-201445
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de característicasA methodology to extract knowledge from time series using motif identification and feature extractionData MiningExtração de CaracterísticasFeature ExtractionLimnologiaLimnologyMineração de DadosMotifsMotifsSéries TemporaisTime SeriesMineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literaturaData mining has been applied to several areas with the objective of extracting interesting and relevant knowledge from large data bases. In this scenario, machine learning provides some of the main methods employed in data mining. Symbolic learning are among the most used machine learning methods since these methods can provide models that can be interpreted by domain experts. However, traditional machine learning methods, such as decision trees and decision rules, do not take into account the temporal information present into data. This work proposes a methodology to extract knowledge from time series data using feature extraction and motif identification. Features and motifs are used as attributes for knowledge extraction performed by machine learning methods. This methodology was evaluated using some well-known data sets. In addition, we compared the proposed methodology to the approach that feeds machine learning algorithms with raw time series data. Results show that there are statistically significant differences for most of the data sets employed in the study. Finally, it is presented a preliminary study with environmental monitoring data from the Itaipu reservoir, made available by Itaipu Binacional. This study is restricted to the application of motif identification. We have used time series of water temperature collected from several regions of the reservoir. In this study, a pattern in motif distribution was observed for each region of the reservoir, agreeing with some well-known literature resultsBiblioteca Digitais de Teses e Dissertações da USPBatista, Gustavo Enrique de Almeida Prado AlvesMaletzke, André Gustavo2009-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-04062009-201445Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
A methodology to extract knowledge from time series using motif identification and feature extraction
title Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
spellingShingle Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
Maletzke, André Gustavo
Data Mining
Extração de Características
Feature Extraction
Limnologia
Limnology
Mineração de Dados
Motifs
Motifs
Séries Temporais
Time Series
title_short Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
title_full Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
title_fullStr Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
title_full_unstemmed Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
title_sort Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
author Maletzke, André Gustavo
author_facet Maletzke, André Gustavo
author_role author
dc.contributor.none.fl_str_mv Batista, Gustavo Enrique de Almeida Prado Alves
dc.contributor.author.fl_str_mv Maletzke, André Gustavo
dc.subject.por.fl_str_mv Data Mining
Extração de Características
Feature Extraction
Limnologia
Limnology
Mineração de Dados
Motifs
Motifs
Séries Temporais
Time Series
topic Data Mining
Extração de Características
Feature Extraction
Limnologia
Limnology
Mineração de Dados
Motifs
Motifs
Séries Temporais
Time Series
description Mineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literatura
publishDate 2009
dc.date.none.fl_str_mv 2009-04-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256659777290240