Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/ |
Resumo: | Mineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literatura |
id |
USP_340af5a3b9f70558600ef66cdf4eb983 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04062009-201445 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de característicasA methodology to extract knowledge from time series using motif identification and feature extractionData MiningExtração de CaracterísticasFeature ExtractionLimnologiaLimnologyMineração de DadosMotifsMotifsSéries TemporaisTime SeriesMineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literaturaData mining has been applied to several areas with the objective of extracting interesting and relevant knowledge from large data bases. In this scenario, machine learning provides some of the main methods employed in data mining. Symbolic learning are among the most used machine learning methods since these methods can provide models that can be interpreted by domain experts. However, traditional machine learning methods, such as decision trees and decision rules, do not take into account the temporal information present into data. This work proposes a methodology to extract knowledge from time series data using feature extraction and motif identification. Features and motifs are used as attributes for knowledge extraction performed by machine learning methods. This methodology was evaluated using some well-known data sets. In addition, we compared the proposed methodology to the approach that feeds machine learning algorithms with raw time series data. Results show that there are statistically significant differences for most of the data sets employed in the study. Finally, it is presented a preliminary study with environmental monitoring data from the Itaipu reservoir, made available by Itaipu Binacional. This study is restricted to the application of motif identification. We have used time series of water temperature collected from several regions of the reservoir. In this study, a pattern in motif distribution was observed for each region of the reservoir, agreeing with some well-known literature resultsBiblioteca Digitais de Teses e Dissertações da USPBatista, Gustavo Enrique de Almeida Prado AlvesMaletzke, André Gustavo2009-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-04062009-201445Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características A methodology to extract knowledge from time series using motif identification and feature extraction |
title |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características |
spellingShingle |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características Maletzke, André Gustavo Data Mining Extração de Características Feature Extraction Limnologia Limnology Mineração de Dados Motifs Motifs Séries Temporais Time Series |
title_short |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características |
title_full |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características |
title_fullStr |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características |
title_full_unstemmed |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características |
title_sort |
Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características |
author |
Maletzke, André Gustavo |
author_facet |
Maletzke, André Gustavo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Batista, Gustavo Enrique de Almeida Prado Alves |
dc.contributor.author.fl_str_mv |
Maletzke, André Gustavo |
dc.subject.por.fl_str_mv |
Data Mining Extração de Características Feature Extraction Limnologia Limnology Mineração de Dados Motifs Motifs Séries Temporais Time Series |
topic |
Data Mining Extração de Características Feature Extraction Limnologia Limnology Mineração de Dados Motifs Motifs Séries Temporais Time Series |
description |
Mineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literatura |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256659777290240 |