Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/74/74132/tde-27042015-160229/ |
Resumo: | A determinação de propriedades físicas dos óleos essenciais é fundamental para sua aplicação na indústria de alimentos e também em projetos de equipamentos. A vasta quantidade de variáveis envolvidas no processo de desterpenação, tais como temperatura, pressão e composição, tornam a utilização de modelos preditivos de viscosidade necessária. Este trabalho teve como objetivo a obtenção de parâmetros para o modelo preditivo de viscosidade UNIFAC-VISCO com aplicação do método de otimização do gradiente descendente, a partir de dados de viscosidade de sistemas modelo que representam as fases que podem ser formadas em processos de desterpenação por extração líquido-líquido dos óleos essenciais de bergamota, limão e hortelã, utilizando como solvente uma mistura de etanol e água, em diferentes composições, a 25ºC. O experimento foi dividido em duas configurações; na primeira os parâmetros de interação previamente reportados na literatura foram mantidos fixos; na segunda todos os parâmetros de interação foram ajustados. O modelo e o método de otimização foram implementados em linguagem MATLAB®. O algoritmo de otimização foi executado 10 vezes para cada configuração, partindo de matrizes de parâmetros de interação iniciais diferentes obtidos pelo método de Monte Carlo. Os resultados foram comparados com o estudo realizado por Florido et al. (2014), no qual foi utilizado algoritmo genético como método de otimização. A primeira configuração obteve desvio médio relativo (DMR) de 1,366 e a segunda configuração resultou um DMR de 1,042. O método do gradiente descendente apresentou melhor desempenho para a primeira configuração em comparação com o método do algoritmo genético (DMR 1,70). Para a segunda configuração o método do algoritmo genético obteve melhor resultado (DMR 0,68). A capacidade preditiva do modelo UNIFAC-VISCO foi avaliada para o sistema de óleo essencial de eucalipto com os parâmetros determinados, obtendo-se DMR iguais a 17,191 e 3,711, para primeira e segunda configuração, respectivamente. Esses valores de DMR foram maiores do que os encontrados por Florido et al. (2014) (3,56 e 1,83 para primeira e segunda configuração, respectivamente). Os parâmetros de maior contribuição para o cálculo do DMR são CH-CH3 e OH-H2O para a primeira e segunda configuração, respectivamente. Os parâmetros que envolvem o grupo C não influenciam no valor do DMR, podendo ser excluído de análises futuras. |
id |
USP_3419c6e49be048d51ca12b263d708e92 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27042015-160229 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciaisOptimization of interaction parameters for UNIFAC-VISCO model of mixtures interesting to essential oil industriesDesterpenaçãoDeterpenationGradient descentGradiente descendenteMétodos de otimizaçãoModelos preditivosOptimization methodsPredictive modelsViscosidadeViscosityA determinação de propriedades físicas dos óleos essenciais é fundamental para sua aplicação na indústria de alimentos e também em projetos de equipamentos. A vasta quantidade de variáveis envolvidas no processo de desterpenação, tais como temperatura, pressão e composição, tornam a utilização de modelos preditivos de viscosidade necessária. Este trabalho teve como objetivo a obtenção de parâmetros para o modelo preditivo de viscosidade UNIFAC-VISCO com aplicação do método de otimização do gradiente descendente, a partir de dados de viscosidade de sistemas modelo que representam as fases que podem ser formadas em processos de desterpenação por extração líquido-líquido dos óleos essenciais de bergamota, limão e hortelã, utilizando como solvente uma mistura de etanol e água, em diferentes composições, a 25ºC. O experimento foi dividido em duas configurações; na primeira os parâmetros de interação previamente reportados na literatura foram mantidos fixos; na segunda todos os parâmetros de interação foram ajustados. O modelo e o método de otimização foram implementados em linguagem MATLAB®. O algoritmo de otimização foi executado 10 vezes para cada configuração, partindo de matrizes de parâmetros de interação iniciais diferentes obtidos pelo método de Monte Carlo. Os resultados foram comparados com o estudo realizado por Florido et al. (2014), no qual foi utilizado algoritmo genético como método de otimização. A primeira configuração obteve desvio médio relativo (DMR) de 1,366 e a segunda configuração resultou um DMR de 1,042. O método do gradiente descendente apresentou melhor desempenho para a primeira configuração em comparação com o método do algoritmo genético (DMR 1,70). Para a segunda configuração o método do algoritmo genético obteve melhor resultado (DMR 0,68). A capacidade preditiva do modelo UNIFAC-VISCO foi avaliada para o sistema de óleo essencial de eucalipto com os parâmetros determinados, obtendo-se DMR iguais a 17,191 e 3,711, para primeira e segunda configuração, respectivamente. Esses valores de DMR foram maiores do que os encontrados por Florido et al. (2014) (3,56 e 1,83 para primeira e segunda configuração, respectivamente). Os parâmetros de maior contribuição para o cálculo do DMR são CH-CH3 e OH-H2O para a primeira e segunda configuração, respectivamente. Os parâmetros que envolvem o grupo C não influenciam no valor do DMR, podendo ser excluído de análises futuras.The determination of physical properties of essential oils is critical to their application in the food industry and also in equipment design. The large number of variables involved in deterpenation process, such as temperature, pressure and composition, to make use of viscosity predictive models required. This study aimed obtain parameters for the viscosity predictive model UNIFAC-VISCO using gradient descent as optimization method to model systems viscosity data representing the phases that can be formed in deterpenation processes for extraction liquid-liquid of bergamot, lemon and mint essential oils, using aqueous ethanol as solvente in different compositions at 25 º C. The work was divided in two configurations; in the first one the interaction parameters previously reported in the literature were kept fixed; in the second one all interaction parameters were adjusted. The model and the gradient descent method were implemented in MATLAB language. The optimization algorithm was runned 10 times for each configuration, starting from different arrays of initial interaction parameters obtained by the Monte Carlo method. The results were compared with the study carried out by Florido et al. (2014), which used genetic algorithm as optimization method. The first configuration provided an average deviation (DMR) of 1,366 and the second configuration resulted in a DMR 1,042. The gradient descent method showed better results for the first configuration comparing with the genetic algorithm method (DMR 1.70). On the other hand, for the second configuration the genetic algorithm method had a better result (DMR 0.68). The UNIFAC-VISCO model predictive ability was evaluated for eucalyptus essential oil system using the obtained parameters, providing DMR equal to 17.191 and 3.711, for the first and second configuration, respectively. The parameters determined by genetic algorithm presented lower DMR for the two settings (3.56 and 1.83 to the first and second configuration, respectively). The major parameters for calculating the DMR are CH-CH3 and OH-H2O to the first and second configuration, respectively. The parameters involving the C group did not influence the DMR and may be excluded from further analysis.Biblioteca Digitais de Teses e Dissertações da USPGonçalves, Cintia BernardoPinto, Camila Nardi2015-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/74/74132/tde-27042015-160229/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-27042015-160229Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais Optimization of interaction parameters for UNIFAC-VISCO model of mixtures interesting to essential oil industries |
title |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais |
spellingShingle |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais Pinto, Camila Nardi Desterpenação Deterpenation Gradient descent Gradiente descendente Métodos de otimização Modelos preditivos Optimization methods Predictive models Viscosidade Viscosity |
title_short |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais |
title_full |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais |
title_fullStr |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais |
title_full_unstemmed |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais |
title_sort |
Otimização de parâmetros de interação do modelo UNIFAC-VISCO de misturas de interesse para a indústria de óleos essenciais |
author |
Pinto, Camila Nardi |
author_facet |
Pinto, Camila Nardi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonçalves, Cintia Bernardo |
dc.contributor.author.fl_str_mv |
Pinto, Camila Nardi |
dc.subject.por.fl_str_mv |
Desterpenação Deterpenation Gradient descent Gradiente descendente Métodos de otimização Modelos preditivos Optimization methods Predictive models Viscosidade Viscosity |
topic |
Desterpenação Deterpenation Gradient descent Gradiente descendente Métodos de otimização Modelos preditivos Optimization methods Predictive models Viscosidade Viscosity |
description |
A determinação de propriedades físicas dos óleos essenciais é fundamental para sua aplicação na indústria de alimentos e também em projetos de equipamentos. A vasta quantidade de variáveis envolvidas no processo de desterpenação, tais como temperatura, pressão e composição, tornam a utilização de modelos preditivos de viscosidade necessária. Este trabalho teve como objetivo a obtenção de parâmetros para o modelo preditivo de viscosidade UNIFAC-VISCO com aplicação do método de otimização do gradiente descendente, a partir de dados de viscosidade de sistemas modelo que representam as fases que podem ser formadas em processos de desterpenação por extração líquido-líquido dos óleos essenciais de bergamota, limão e hortelã, utilizando como solvente uma mistura de etanol e água, em diferentes composições, a 25ºC. O experimento foi dividido em duas configurações; na primeira os parâmetros de interação previamente reportados na literatura foram mantidos fixos; na segunda todos os parâmetros de interação foram ajustados. O modelo e o método de otimização foram implementados em linguagem MATLAB®. O algoritmo de otimização foi executado 10 vezes para cada configuração, partindo de matrizes de parâmetros de interação iniciais diferentes obtidos pelo método de Monte Carlo. Os resultados foram comparados com o estudo realizado por Florido et al. (2014), no qual foi utilizado algoritmo genético como método de otimização. A primeira configuração obteve desvio médio relativo (DMR) de 1,366 e a segunda configuração resultou um DMR de 1,042. O método do gradiente descendente apresentou melhor desempenho para a primeira configuração em comparação com o método do algoritmo genético (DMR 1,70). Para a segunda configuração o método do algoritmo genético obteve melhor resultado (DMR 0,68). A capacidade preditiva do modelo UNIFAC-VISCO foi avaliada para o sistema de óleo essencial de eucalipto com os parâmetros determinados, obtendo-se DMR iguais a 17,191 e 3,711, para primeira e segunda configuração, respectivamente. Esses valores de DMR foram maiores do que os encontrados por Florido et al. (2014) (3,56 e 1,83 para primeira e segunda configuração, respectivamente). Os parâmetros de maior contribuição para o cálculo do DMR são CH-CH3 e OH-H2O para a primeira e segunda configuração, respectivamente. Os parâmetros que envolvem o grupo C não influenciam no valor do DMR, podendo ser excluído de análises futuras. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/74/74132/tde-27042015-160229/ |
url |
http://www.teses.usp.br/teses/disponiveis/74/74132/tde-27042015-160229/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257407690899456 |