Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-01082018-184101/ |
Resumo: | In the post-harvest area, a common approach to quantify the average color of fruits peel over time is the sampling of small number of points generally on its equatorial region using a colorimeter. However, when we use a colorimeter to classify an uneven-colored fruit misclassification may occur because points in the peel region may not be representative of average color of fruit. The main problem when we use this method is to determine the number of points to be sampled as well as the location of these points on the fruit\'s surface. An alternative method to evaluate measure of color is digital image analysis because it covers whole of the object surface, by using a sample of pixels taken from the image. As the colorimeter approach is faster and easier than image analysis, it may not be suitable for assessing the overall mean color of the papaya\'s peel and its performance will depend on the number of measured points and choice of sampled region. In this sense, the comparison between these approach is still necessary because we need to know if a sample on the equatorial region can reproduce a sample over the whole region, and if the colorimeter can compete with a scanner or digital camera in measuring the mean hue of papaya peel over time. Thus, we proposed a longitudinal concordance correlation (LCC) based on polynomial mixed-effects regression model to evaluate the extent of agreement among methods. The results show that ideally image analysis of whole fruit\'s region should be used to compute the mean hue and that the topography and curved surface of papaya fruit did not affect the mean hue obtained by the scanner. Since there are still no packages available to estimate the LCC in the free software environment R, we are developing a package called lcc, which provides functions for estimating the longitudinal concordance correlation (LCC) among methods based on variance components and fixed effects of polynomial mixed-effects model. Additionally, we implemented arguments in this function to estimating the longitudinal Pearson correlation (LPC), as precision measure, and longitudinal bias corrector factor (LA), as accuracy measure. Moreover, these components can be estimated using different structures for variance- covariance matrices of random effects and variance functions to model heteroscedasticity among within-group errors using or not the time as variance covariate. |
id |
USP_34cdfc1cef4e07881b3a5aa8c457461e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01082018-184101 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression modelEstimando a correlação de concordância longitudinal por meio de efeitos fixos e componentes de variâncias do modelo de regressão polinomial de efeitos mistosCarica papaya L.Carica papaya L.Análise de corColor analysisConcordância longitudinalDados longitudinaisLongitudinal agreementLongitudinal dataMixed-effects regressionModelo de regressão linear mistoSoftware RSoftware RIn the post-harvest area, a common approach to quantify the average color of fruits peel over time is the sampling of small number of points generally on its equatorial region using a colorimeter. However, when we use a colorimeter to classify an uneven-colored fruit misclassification may occur because points in the peel region may not be representative of average color of fruit. The main problem when we use this method is to determine the number of points to be sampled as well as the location of these points on the fruit\'s surface. An alternative method to evaluate measure of color is digital image analysis because it covers whole of the object surface, by using a sample of pixels taken from the image. As the colorimeter approach is faster and easier than image analysis, it may not be suitable for assessing the overall mean color of the papaya\'s peel and its performance will depend on the number of measured points and choice of sampled region. In this sense, the comparison between these approach is still necessary because we need to know if a sample on the equatorial region can reproduce a sample over the whole region, and if the colorimeter can compete with a scanner or digital camera in measuring the mean hue of papaya peel over time. Thus, we proposed a longitudinal concordance correlation (LCC) based on polynomial mixed-effects regression model to evaluate the extent of agreement among methods. The results show that ideally image analysis of whole fruit\'s region should be used to compute the mean hue and that the topography and curved surface of papaya fruit did not affect the mean hue obtained by the scanner. Since there are still no packages available to estimate the LCC in the free software environment R, we are developing a package called lcc, which provides functions for estimating the longitudinal concordance correlation (LCC) among methods based on variance components and fixed effects of polynomial mixed-effects model. Additionally, we implemented arguments in this function to estimating the longitudinal Pearson correlation (LPC), as precision measure, and longitudinal bias corrector factor (LA), as accuracy measure. Moreover, these components can be estimated using different structures for variance- covariance matrices of random effects and variance functions to model heteroscedasticity among within-group errors using or not the time as variance covariate.No setor de pós-colheita é muito comum a utilização de colorímetros para avaliar a cor média da casca de frutos ao longo do tempo. No entanto, muitas vezes as técnicas de amostragem utilizando esse equipamento podem levar a medidas tendenciosas da média amostral. Alternativamente, a utilização de imagens digitais pode levar a um menor viés, uma vez que toda a região da casca do fruto é amostrada de forma sistemática. No entanto, ainda é necessária a comparação de ambas abordagens, pois o colorímetro tem vantagens em relação a facilidade de utilização e menor tempo para realizar a amostragem em cada fruto quando comparado a um scanner de mesa. Assim, no caso de variáveis respostas medidas em uma escala contínua, a reprodutibilidade das medidas tomadas por ambos equipamentos pode ser avaliada por meio do coeficiente de correlação de concordância. Dessa forma, para avaliar o perfil da concordância entre métodos, nós propomos uma correlação de concordância longitudinal (LCC), baseada em um modelo de regressão polinomial com efeitos mistos. Os resultados sugeriram que as técnicas por meio de imagens digitais devem ser utilizadas para a quantificação da tonalidade média de frutos. Adicionalmente, a partir do perfil de concordância estimado notamos que existe um período em que ambos os equipamentos podem ser utilizados. A performance do coeficiente de concordância longitudinal foi avaliada por meio de um estudo de simulação, o qual sugeriu que nossa metodologia é robusta a dados desbalanceados (\"dropout\") e que a probabilidade de convergência é aceitavel para uma amostra de 20 frutos e ideal para amostras a partir de 100 frutos. Uma vez que ainda não existem pacotes disponibilizados no ambiente computacional R para a estimação da correlação de concordância longitudinal, nós estamos desenvolvendo um pacote intitulado lcc, o qual será submetido ao \"Comprehensive R Archive Network\" (CRAN). Nesse pacote nós implementamos procedimentos para estimação da correlação de concordância longitudinal, da correlação de Person longitudinal e de uma medida de acurácia longitudinal. Além disso, nosso pacote foi desenvolvido para dados balanceados e desbalanceados, permitindo modelar a heteroscedasticidade entre erros dentro do grupo usando ou não o tempo como covariável, e, também, permitindo a inclusão de covariáveis no preditor linear para controlar variações sistemáticas na variável resposta.Biblioteca Digitais de Teses e Dissertações da USPZocchi, Silvio SandovalOliveira, Thiago de Paula2018-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-01082018-184101/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-08-14T16:00:05Zoai:teses.usp.br:tde-01082018-184101Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-14T16:00:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model Estimando a correlação de concordância longitudinal por meio de efeitos fixos e componentes de variâncias do modelo de regressão polinomial de efeitos mistos |
title |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model |
spellingShingle |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model Oliveira, Thiago de Paula Carica papaya L. Carica papaya L. Análise de cor Color analysis Concordância longitudinal Dados longitudinais Longitudinal agreement Longitudinal data Mixed-effects regression Modelo de regressão linear misto Software R Software R |
title_short |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model |
title_full |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model |
title_fullStr |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model |
title_full_unstemmed |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model |
title_sort |
Estimating the longitudinal concordance correlation through fixed effects and variance components of polynomial mixed-effects regression model |
author |
Oliveira, Thiago de Paula |
author_facet |
Oliveira, Thiago de Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Zocchi, Silvio Sandoval |
dc.contributor.author.fl_str_mv |
Oliveira, Thiago de Paula |
dc.subject.por.fl_str_mv |
Carica papaya L. Carica papaya L. Análise de cor Color analysis Concordância longitudinal Dados longitudinais Longitudinal agreement Longitudinal data Mixed-effects regression Modelo de regressão linear misto Software R Software R |
topic |
Carica papaya L. Carica papaya L. Análise de cor Color analysis Concordância longitudinal Dados longitudinais Longitudinal agreement Longitudinal data Mixed-effects regression Modelo de regressão linear misto Software R Software R |
description |
In the post-harvest area, a common approach to quantify the average color of fruits peel over time is the sampling of small number of points generally on its equatorial region using a colorimeter. However, when we use a colorimeter to classify an uneven-colored fruit misclassification may occur because points in the peel region may not be representative of average color of fruit. The main problem when we use this method is to determine the number of points to be sampled as well as the location of these points on the fruit\'s surface. An alternative method to evaluate measure of color is digital image analysis because it covers whole of the object surface, by using a sample of pixels taken from the image. As the colorimeter approach is faster and easier than image analysis, it may not be suitable for assessing the overall mean color of the papaya\'s peel and its performance will depend on the number of measured points and choice of sampled region. In this sense, the comparison between these approach is still necessary because we need to know if a sample on the equatorial region can reproduce a sample over the whole region, and if the colorimeter can compete with a scanner or digital camera in measuring the mean hue of papaya peel over time. Thus, we proposed a longitudinal concordance correlation (LCC) based on polynomial mixed-effects regression model to evaluate the extent of agreement among methods. The results show that ideally image analysis of whole fruit\'s region should be used to compute the mean hue and that the topography and curved surface of papaya fruit did not affect the mean hue obtained by the scanner. Since there are still no packages available to estimate the LCC in the free software environment R, we are developing a package called lcc, which provides functions for estimating the longitudinal concordance correlation (LCC) among methods based on variance components and fixed effects of polynomial mixed-effects model. Additionally, we implemented arguments in this function to estimating the longitudinal Pearson correlation (LPC), as precision measure, and longitudinal bias corrector factor (LA), as accuracy measure. Moreover, these components can be estimated using different structures for variance- covariance matrices of random effects and variance functions to model heteroscedasticity among within-group errors using or not the time as variance covariate. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-01082018-184101/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-01082018-184101/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256583776501760 |