Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/64/64135/tde-04092023-145140/ |
Resumo: | X-ray fluorescence spectrometry (XRF) is a technique widely employed for elemental determination. However, the present study pointed to an unconventional direction evaluating the capability of XRF to determine the protein content of soybeans. This was motivated by the perception that soybean might be soon traded based on protein content rather than total grain weight. Additionally, XRF is simply operated, does not require gases or chemicals and the sample preparation and measurements are rapid. The study hypothesizes that sulfur concentration might proxy protein content in soybeans. The research was divided into two parts. Firstly, sample preparation and data acquisition methods were defined and optimized. Briefly, the proposed method consists in (1) coarsely grinding the grains with a household coffee grinder and then (2) scanning the samples for 90 s with the X-ray tube set at 40 kV and 30 A. Employing 108 samples in the calibration set, a logistic regression model was developed to classify soybean into high- or low-protein groups. The model was validated using an independent set of 54 samples. At validation, the global accuracy and kappa index of the model were 0.81 and 0.61, respectively. The numbers indicate that the technique can be used for classifying soybean based on protein content. In the second part of the research, univariate linear regression, multiple linear regression, and partial least squares regression (PLS) models were established to evaluate the feasibility of quantifying the attribute. The models presented reasonable predictive performance (RPD > 1.57) and PLS presented the highest performance (R2 = 0.73) at the validation, suggesting that the XRF technique can be used for rough screening applications. Additionally, samples prepared by mixing soybeans with soybean flours were added in the calibration (22 samples) and validation (10 samples) sets to widen the protein range. The protein content range was 33.8% - 43.9% and changed to 19.2% - 54% after including the mixtures. In this scenario, higher R2 values were obtained (e.g., R2 = 0.89 for PLS), confirming that protein can be predicted from XRF data. The hypothesis that sulfur proxies the protein content in soybeans was confirmed by the present study, since the sulfer emission line was the most important variable for prediction, regardless of the modeling strategy used |
id |
USP_3558eb1b5dbf2ec64e68eb470cc678a5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04092023-145140 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grainsDesenvolvimento de um método rápido e confiável por fluorescência de raios X para a determinação da concentração de proteína bruta em grãos de sojaAnálise de alimentosChemometricsFood analysisQuimiometriaXRFXRFX-ray fluorescence spectrometry (XRF) is a technique widely employed for elemental determination. However, the present study pointed to an unconventional direction evaluating the capability of XRF to determine the protein content of soybeans. This was motivated by the perception that soybean might be soon traded based on protein content rather than total grain weight. Additionally, XRF is simply operated, does not require gases or chemicals and the sample preparation and measurements are rapid. The study hypothesizes that sulfur concentration might proxy protein content in soybeans. The research was divided into two parts. Firstly, sample preparation and data acquisition methods were defined and optimized. Briefly, the proposed method consists in (1) coarsely grinding the grains with a household coffee grinder and then (2) scanning the samples for 90 s with the X-ray tube set at 40 kV and 30 A. Employing 108 samples in the calibration set, a logistic regression model was developed to classify soybean into high- or low-protein groups. The model was validated using an independent set of 54 samples. At validation, the global accuracy and kappa index of the model were 0.81 and 0.61, respectively. The numbers indicate that the technique can be used for classifying soybean based on protein content. In the second part of the research, univariate linear regression, multiple linear regression, and partial least squares regression (PLS) models were established to evaluate the feasibility of quantifying the attribute. The models presented reasonable predictive performance (RPD > 1.57) and PLS presented the highest performance (R2 = 0.73) at the validation, suggesting that the XRF technique can be used for rough screening applications. Additionally, samples prepared by mixing soybeans with soybean flours were added in the calibration (22 samples) and validation (10 samples) sets to widen the protein range. The protein content range was 33.8% - 43.9% and changed to 19.2% - 54% after including the mixtures. In this scenario, higher R2 values were obtained (e.g., R2 = 0.89 for PLS), confirming that protein can be predicted from XRF data. The hypothesis that sulfur proxies the protein content in soybeans was confirmed by the present study, since the sulfer emission line was the most important variable for prediction, regardless of the modeling strategy usedA espectrometria de fluorescência de raios X (XRF) é uma técnica amplamente utilizada para determinação elementar. Contudo, o presente estudo apontou uma direção não convencional, ao avaliar o desempenho da espectrometria de XRF para a determinação da concentração de proteína na soja. Este estudo foi motivado pela percepção de que a soja poderia em breve ser comercializada com base na concentração de proteína, em vez do peso total dos grãos. Além disso, o equipamento é de simples operação, não requer gases ou reagentes nocivos, e o preparo das amostras e as medições são rápidas. O estudo pressupõe que a concentração de enxofre pode ser utilizada para estimar a concentração de proteína na soja. A pesquisa foi dividida em duas partes. Na primeira, foram definidos e otimizados os métodos de preparo de amostra e de aquisição de dados. Resumidamente, o método proposto consiste (1) na moagem grosseira dos grãos com um moinho de café doméstico e (2) na realização de medidas de XRF de 90 s e com o tubo de raios X configurado em 40 kV e 30 A. Com 108 amostras no conjunto de calibração, desenvolveu-se uma regressão logística para classificar a soja em grupos de alta ou baixa concentração de proteína. Testou-se o modelo com 54 amostras (conjunto de validação). Na validação, a acurácia global e o índice kappa do modelo foram 0,81 e 0,61, respectivamente. Os números indicam que a técnica pode ser utilizada para classificar a soja com base no teor de proteína. Na segunda parte da pesquisa, foram desenvolvidos modelos de regressão linear simples, regressão linear múltipla e regressão por quadrados mínimos parciais (PLS) para avaliar a potencialidade da espectrometria de XRF na quantificação do atributo. Os modelos apresentaram na validação desempenhos preditivos razoáveis (RPD > 1,57) e entre eles o PLS apresentou o melhor desempenho (R2 = 0,73). Os resultados sugerem que o sensor pode ser utilizado para estimar a concentração de proteína na soja. Além disso, foram adicionadas 22 amostras no conjunto de calibração e 10 amostras no conjunto de validação, as quais foram preparadas misturando-se soja com farinhas de soja, com o objetivo de aumentar a faixa de concentração de proteína dos conjuntos. A faixa de concentração de proteína foi alterada de 33,8% - 43,9% para 19,2% - 54.0%, com essa inclusão. Neste cenário, foram observados valores mais elevados de R2 (e.g., R2 = 0,89 para PLS), confirmando que a concentração do atributo pode ser determinada com dados de XRF. A hipótese de que o enxofre pode ser utilizado para estimar a concentração de proteína na soja foi confirmada no presente estudo, uma vez que a linha de emissão do enxofre foi a variável mais importante para prever proteína, independentemente da estratégia de modelagem utilizadaBiblioteca Digitais de Teses e Dissertações da USPCarvalho, Hudson Wallace Pereira deCamargo, Rachel Ferraz de2023-04-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/64/64135/tde-04092023-145140/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-10-10T12:47:02Zoai:teses.usp.br:tde-04092023-145140Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-10-10T12:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains Desenvolvimento de um método rápido e confiável por fluorescência de raios X para a determinação da concentração de proteína bruta em grãos de soja |
title |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains |
spellingShingle |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains Camargo, Rachel Ferraz de Análise de alimentos Chemometrics Food analysis Quimiometria XRF XRF |
title_short |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains |
title_full |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains |
title_fullStr |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains |
title_full_unstemmed |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains |
title_sort |
Development of a rapid and reliable X-ray fluorescence method for protein determination in soybean grains |
author |
Camargo, Rachel Ferraz de |
author_facet |
Camargo, Rachel Ferraz de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carvalho, Hudson Wallace Pereira de |
dc.contributor.author.fl_str_mv |
Camargo, Rachel Ferraz de |
dc.subject.por.fl_str_mv |
Análise de alimentos Chemometrics Food analysis Quimiometria XRF XRF |
topic |
Análise de alimentos Chemometrics Food analysis Quimiometria XRF XRF |
description |
X-ray fluorescence spectrometry (XRF) is a technique widely employed for elemental determination. However, the present study pointed to an unconventional direction evaluating the capability of XRF to determine the protein content of soybeans. This was motivated by the perception that soybean might be soon traded based on protein content rather than total grain weight. Additionally, XRF is simply operated, does not require gases or chemicals and the sample preparation and measurements are rapid. The study hypothesizes that sulfur concentration might proxy protein content in soybeans. The research was divided into two parts. Firstly, sample preparation and data acquisition methods were defined and optimized. Briefly, the proposed method consists in (1) coarsely grinding the grains with a household coffee grinder and then (2) scanning the samples for 90 s with the X-ray tube set at 40 kV and 30 A. Employing 108 samples in the calibration set, a logistic regression model was developed to classify soybean into high- or low-protein groups. The model was validated using an independent set of 54 samples. At validation, the global accuracy and kappa index of the model were 0.81 and 0.61, respectively. The numbers indicate that the technique can be used for classifying soybean based on protein content. In the second part of the research, univariate linear regression, multiple linear regression, and partial least squares regression (PLS) models were established to evaluate the feasibility of quantifying the attribute. The models presented reasonable predictive performance (RPD > 1.57) and PLS presented the highest performance (R2 = 0.73) at the validation, suggesting that the XRF technique can be used for rough screening applications. Additionally, samples prepared by mixing soybeans with soybean flours were added in the calibration (22 samples) and validation (10 samples) sets to widen the protein range. The protein content range was 33.8% - 43.9% and changed to 19.2% - 54% after including the mixtures. In this scenario, higher R2 values were obtained (e.g., R2 = 0.89 for PLS), confirming that protein can be predicted from XRF data. The hypothesis that sulfur proxies the protein content in soybeans was confirmed by the present study, since the sulfer emission line was the most important variable for prediction, regardless of the modeling strategy used |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/64/64135/tde-04092023-145140/ |
url |
https://www.teses.usp.br/teses/disponiveis/64/64135/tde-04092023-145140/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256671648219136 |