Accretion discs, jets, and black hole spins: a study of blazars

Detalhes bibliográficos
Autor(a) principal: Gustavo Rodrigues Romano Soares
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.14.2020.tde-18052020-103653
Resumo: Blazars are among the most powerful astrophysical objects in the universe. Their multiwavelength emission displays traces of non-thermal radiation whose origin is not yet fully understood, and it is dominated by the presence of a relativistic jet. Blazar emission is characterized by high-variability across different wavelenghts, which is associated with a spinning black hole and relativistic effects in the jet. Using blazars as a laboratory, in this thesis we set out to answer a few fundamental questions, such as where and how does the non-thermal emission in blazars originate?, how robust are theoretical models in explaining the efficiency of jet formation?, and can these models accurately predict the spins of the black holes associated with these jets? To answer these questions, we employ two different methods: -ray observations and general relativistic magnetohydrodynamic (GRMHD) simulations. In the first study, we used the luminosities of a class of blazars to calculate the jet efficiency, and we estimated the black holes spins. We found a mean spin of a* = 0.84, with a lower limit estimated at a*(lower) = 0.59. These results show compatibility with cosmological merger-driven evolution of SMBHs which support rapidly rotating black holes. Moreover, we found a correlation between the black hole mass and the -ray luminosity L. In the second study, we used GRMHD simulations and applied an algorithm to identify the regions in which non-thermal emission must occur. We ran simulations with different initial conditions, varying the magnetic field topology and black hole spin, and we found these regions in all simulations. In particular, we found that this also occurs in the jet for some simulations, thus suggesting that it is possible to apply radiative transfer to simulation data in order to model non-thermal emission in different astrophysical contexts.
id USP_355e25263b12888defe39d6b234dc9e9
oai_identifier_str oai:teses.usp.br:tde-18052020-103653
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Accretion discs, jets, and black hole spins: a study of blazars Discos de acreção, jatos, e spins de buracos negros: um estudo de blazares 2020-04-06Rodrigo Nemmen da SilvaZulema AbrahamBruno Geraldo Carneiro da CunhaRoderik Adriaan OverzierElisabete Maria de Gouveia Dal PinoAlexander TchekovskoyGustavo Rodrigues Romano SoaresUniversidade de São PauloAstronomiaUSPBR Accretion discs Active Galactic Nuclei Black holes Blazares Blazars Buracos Negros Discos de acreção Núcleos Ativos de Galáxias Numerical Simulations Simulações Numéricas Blazars are among the most powerful astrophysical objects in the universe. Their multiwavelength emission displays traces of non-thermal radiation whose origin is not yet fully understood, and it is dominated by the presence of a relativistic jet. Blazar emission is characterized by high-variability across different wavelenghts, which is associated with a spinning black hole and relativistic effects in the jet. Using blazars as a laboratory, in this thesis we set out to answer a few fundamental questions, such as where and how does the non-thermal emission in blazars originate?, how robust are theoretical models in explaining the efficiency of jet formation?, and can these models accurately predict the spins of the black holes associated with these jets? To answer these questions, we employ two different methods: -ray observations and general relativistic magnetohydrodynamic (GRMHD) simulations. In the first study, we used the luminosities of a class of blazars to calculate the jet efficiency, and we estimated the black holes spins. We found a mean spin of a* = 0.84, with a lower limit estimated at a*(lower) = 0.59. These results show compatibility with cosmological merger-driven evolution of SMBHs which support rapidly rotating black holes. Moreover, we found a correlation between the black hole mass and the -ray luminosity L. In the second study, we used GRMHD simulations and applied an algorithm to identify the regions in which non-thermal emission must occur. We ran simulations with different initial conditions, varying the magnetic field topology and black hole spin, and we found these regions in all simulations. In particular, we found that this also occurs in the jet for some simulations, thus suggesting that it is possible to apply radiative transfer to simulation data in order to model non-thermal emission in different astrophysical contexts. Blazares são alguns dos objetos astrofísicos mais poderosos no universo. Sua emissão ao longo de vários comprimentos de onda apresenta traços de radiação não-térmica cuja origem ainda não é inteiramente compreendida, e ela é dominada pela presença de um jato relativístico. A emissão em blazares é caracterizada por alta variabilidade em vários comprimentos de onda, a qual é associada a um buraco negro em rotação e efeitos relativísticos no jato. Usando blazares como laboratórios, nesta tese nós visamos responder algumas questões fundamentais, tais como onde e como a emissão não-térmica em blazares se origina?, o quão robustos são os modelos teóricos para explicar a eficiência da formação de jatos?, e tais modelos podem prever com precisão os spins dos buracos negros associados a esses jatos? Para responder a essas questões, nós empregamos dois métodos diferentes: observações em raios- e simulações magnetohidrodinâmicas em relatividade geral (GRMHD). No primeiro estudo, utilizamos a luminosidade de uma classe de blazares para calcular a eficiência dos jatos e estimamos os spins dos buracos negros. Nós encontramos um valor médio de a* = 0.84 para o spin, com um limite inferior estimado em a*(lower) = 0.59. Esses resultados mostram compatibilidade com a evolução de buracos negros supermassivos por meio de fusões, originando buracos negros com alta rotação. Além disso, encontramos uma correlação entre a massa dos buracos negros e a luminosidade em raios-, L. No segundo estudo, usamos simulações GRMHD e aplicamos um algoritmo para identificar as regiões em que a emissão não-térmica deve ocorrer. Fizemos simulações com diferentes condições iniciais, variando a topologia do campo magnético e o spin do buraco negro, e encontramos tais regiões em todas as simulações. Em particular, encontramos que isso também ocorre nos jatos para algumas simulações, sugerindo que é possível aplicar transferência radiativa nos dados de simulações para modelar a emissão não-térmica em diferentes contextos astrofísicos. https://doi.org/10.11606/T.14.2020.tde-18052020-103653info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T19:17:43Zoai:teses.usp.br:tde-18052020-103653Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T12:51:11.997466Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv Accretion discs, jets, and black hole spins: a study of blazars
dc.title.alternative.pt.fl_str_mv Discos de acreção, jatos, e spins de buracos negros: um estudo de blazares
title Accretion discs, jets, and black hole spins: a study of blazars
spellingShingle Accretion discs, jets, and black hole spins: a study of blazars
Gustavo Rodrigues Romano Soares
title_short Accretion discs, jets, and black hole spins: a study of blazars
title_full Accretion discs, jets, and black hole spins: a study of blazars
title_fullStr Accretion discs, jets, and black hole spins: a study of blazars
title_full_unstemmed Accretion discs, jets, and black hole spins: a study of blazars
title_sort Accretion discs, jets, and black hole spins: a study of blazars
author Gustavo Rodrigues Romano Soares
author_facet Gustavo Rodrigues Romano Soares
author_role author
dc.contributor.advisor1.fl_str_mv Rodrigo Nemmen da Silva
dc.contributor.referee1.fl_str_mv Zulema Abraham
dc.contributor.referee2.fl_str_mv Bruno Geraldo Carneiro da Cunha
dc.contributor.referee3.fl_str_mv Roderik Adriaan Overzier
dc.contributor.referee4.fl_str_mv Elisabete Maria de Gouveia Dal Pino
dc.contributor.referee5.fl_str_mv Alexander Tchekovskoy
dc.contributor.author.fl_str_mv Gustavo Rodrigues Romano Soares
contributor_str_mv Rodrigo Nemmen da Silva
Zulema Abraham
Bruno Geraldo Carneiro da Cunha
Roderik Adriaan Overzier
Elisabete Maria de Gouveia Dal Pino
Alexander Tchekovskoy
description Blazars are among the most powerful astrophysical objects in the universe. Their multiwavelength emission displays traces of non-thermal radiation whose origin is not yet fully understood, and it is dominated by the presence of a relativistic jet. Blazar emission is characterized by high-variability across different wavelenghts, which is associated with a spinning black hole and relativistic effects in the jet. Using blazars as a laboratory, in this thesis we set out to answer a few fundamental questions, such as where and how does the non-thermal emission in blazars originate?, how robust are theoretical models in explaining the efficiency of jet formation?, and can these models accurately predict the spins of the black holes associated with these jets? To answer these questions, we employ two different methods: -ray observations and general relativistic magnetohydrodynamic (GRMHD) simulations. In the first study, we used the luminosities of a class of blazars to calculate the jet efficiency, and we estimated the black holes spins. We found a mean spin of a* = 0.84, with a lower limit estimated at a*(lower) = 0.59. These results show compatibility with cosmological merger-driven evolution of SMBHs which support rapidly rotating black holes. Moreover, we found a correlation between the black hole mass and the -ray luminosity L. In the second study, we used GRMHD simulations and applied an algorithm to identify the regions in which non-thermal emission must occur. We ran simulations with different initial conditions, varying the magnetic field topology and black hole spin, and we found these regions in all simulations. In particular, we found that this also occurs in the jet for some simulations, thus suggesting that it is possible to apply radiative transfer to simulation data in order to model non-thermal emission in different astrophysical contexts.
publishDate 2020
dc.date.issued.fl_str_mv 2020-04-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.14.2020.tde-18052020-103653
url https://doi.org/10.11606/T.14.2020.tde-18052020-103653
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Astronomia
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794502832207953920