Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol

Detalhes bibliográficos
Autor(a) principal: Amanda Caroline Cardoso Corrêa Carlos Menezes
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.6.2019.tde-10102018-075137
Resumo: Introdução: Doenças cardiovasculares constituem importante causa de morte em todo mundo e a hipercolesterolemia está diretamente relacionada como fator agravante desta morbidade. A dieta desempenha papel importante neste processo e alguns alimentos como o amaranto, especialmente sua proteína, tem mostrado capacidade de redução do colesterol plasmático. Estudos sugerem que este efeito está relacionado a peptídeos formados durante a digestão da sua proteína, os quais desempenham um papel importante na regulação e modulação do metabolismo lipídico. Os efeitos hipocolesterolêmicos, já observados, indicam o uso da proteína do amaranto como um composto bioativo direcionado para a promoção da saúde. Considerando que os efeitos hipocolesterolêmicos destes peptídeos são complexos e há diversas hipóteses formuladas, torna-se importante a realização de estudos visando avaliar a interação dos peptídeos na absorção intestinal do colesterol e da sua modulação genética. Objetivos: Verificar os efeitos do hidrolisado da farinha do grão de amaranto na absorção de colesterol e modulação de genes ABCA1, ABCG1, NPC1L1, AMPK, HMGR e SREBP-2em células Caco-2, e modulação dos genes ABCG8, HMGR, SREBP-2 e AMPKem enterócitos de hamsters. Metodologia: O amaranto foi triturado, sua farinha desengordurada e sua proteína isolada, com posterior digestão in vitro e filtração dos peptídeos. Três experimentos in vitro foram conduzidos com as células: permeação de hidrolisado, permeação de colesterol e de efeito sob a expressão gênica. No primeiro, o hidrolisado proteico de amaranto foi permeado em culturas celulares de Caco-2 no tempo de 2 horas. O permeato foi coletado e analisado por LC/MS/MS. No segundo, o hidrolisado de amaranto foi incorporado a micelas de colesterol e incubados em culturas celulares, nas concentrações de 1,0 mg/ml, e 3,0 mg/ml em tempos de 2h. Também em concentrações de 3,0 mg/ml foi adicionado albumina e caseína para efeito comparativo. O conteúdo de colesterol na porção apical e basolateral foi analisado em HPLC. O terceiro experimento foi avaliaçãoda exposição do hidrolisado, em concentrações de 0,5 mg/ml, 1,0 mg/ml e 3,0 mg/ml, em tempos de 2h e 12h. Após este período, foi realizada a extração de RNA total, avaliação de rendimento e integridade do material; medida quantitativa de expressão de RNAm por RT-PCR e quantificação relativa da expressão por ?CT dos genes ABCA1, ABCG1, ABCG8, NPC1L1, AMP1, HMGR e SREBP-2das células Caco-2 e tecido intestinal de hamsters, coletados em ensaios anteriores. Resultados: Na permeação de colesterol não houve diferença entre as concentrações dos hidrolisados proteicos e controle, porém o hidrolisado de amaranto em 1,0 mg/ml demonstrou uma tendência em diminuir a absorção de colesterol (p = 0,05). Na exposição das células Caco-2 aos peptídeos por 2h, houve uma diminuição nas concentrações de RNAm dos genes ABCA1, NPC1L1, AMPK, HMGR e SREBP-2 nas concentrações de 3,0 mg/ml. O tempo de exposição de 12h apresentou resultados semelhantes ao tempo de 2h. Somente a expressão gênica de ABCG8foi influenciada pelo isolado proteico de amaranto no experimento in vivo. Conclusão: A partir do exposto, podemos concluir que os peptídeos do grão de amaranto influenciam o metabolismo de colesterol por mecanismos genéticos. Portanto, torna-se uma alternativa a ser introduzida na dieta de indivíduos saudáveis e em pacientes com hipercolesterolemia, visando a prevenção de agravos e como estratégia de terapia adicional no controle dos níveis de LDL-c plasmático. Contudo, mais experimentos in vivo e em humanos são necessários para estabelecer a dose efetiva para consumo.
id USP_35d51f2ee380e78e810e6d8fdbb950dd
oai_identifier_str oai:teses.usp.br:tde-10102018-075137
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol Effect of amaranth grain peptides (Amaranthus cruentus L.) on the mechanisms of absorption and synthesis of cholesterol 2018-10-04Jose Alfredo Gomes AreasMarisa PassarelliDaniel Carvalho PimentaMarilia Cerqueira Leite SeelaenderElizabeth Aparecida Ferraz da Silva TorresAmanda Caroline Cardoso Corrêa Carlos MenezesUniversidade de São PauloNutrição em Saúde PúblicaUSPBR Amaranth Amaranto Cholesterol Transporters Hipercolesterolemia Hypercholesterolemia Peptídeos Peptides Transportadores de Colesterol Introdução: Doenças cardiovasculares constituem importante causa de morte em todo mundo e a hipercolesterolemia está diretamente relacionada como fator agravante desta morbidade. A dieta desempenha papel importante neste processo e alguns alimentos como o amaranto, especialmente sua proteína, tem mostrado capacidade de redução do colesterol plasmático. Estudos sugerem que este efeito está relacionado a peptídeos formados durante a digestão da sua proteína, os quais desempenham um papel importante na regulação e modulação do metabolismo lipídico. Os efeitos hipocolesterolêmicos, já observados, indicam o uso da proteína do amaranto como um composto bioativo direcionado para a promoção da saúde. Considerando que os efeitos hipocolesterolêmicos destes peptídeos são complexos e há diversas hipóteses formuladas, torna-se importante a realização de estudos visando avaliar a interação dos peptídeos na absorção intestinal do colesterol e da sua modulação genética. Objetivos: Verificar os efeitos do hidrolisado da farinha do grão de amaranto na absorção de colesterol e modulação de genes ABCA1, ABCG1, NPC1L1, AMPK, HMGR e SREBP-2em células Caco-2, e modulação dos genes ABCG8, HMGR, SREBP-2 e AMPKem enterócitos de hamsters. Metodologia: O amaranto foi triturado, sua farinha desengordurada e sua proteína isolada, com posterior digestão in vitro e filtração dos peptídeos. Três experimentos in vitro foram conduzidos com as células: permeação de hidrolisado, permeação de colesterol e de efeito sob a expressão gênica. No primeiro, o hidrolisado proteico de amaranto foi permeado em culturas celulares de Caco-2 no tempo de 2 horas. O permeato foi coletado e analisado por LC/MS/MS. No segundo, o hidrolisado de amaranto foi incorporado a micelas de colesterol e incubados em culturas celulares, nas concentrações de 1,0 mg/ml, e 3,0 mg/ml em tempos de 2h. Também em concentrações de 3,0 mg/ml foi adicionado albumina e caseína para efeito comparativo. O conteúdo de colesterol na porção apical e basolateral foi analisado em HPLC. O terceiro experimento foi avaliaçãoda exposição do hidrolisado, em concentrações de 0,5 mg/ml, 1,0 mg/ml e 3,0 mg/ml, em tempos de 2h e 12h. Após este período, foi realizada a extração de RNA total, avaliação de rendimento e integridade do material; medida quantitativa de expressão de RNAm por RT-PCR e quantificação relativa da expressão por ?CT dos genes ABCA1, ABCG1, ABCG8, NPC1L1, AMP1, HMGR e SREBP-2das células Caco-2 e tecido intestinal de hamsters, coletados em ensaios anteriores. Resultados: Na permeação de colesterol não houve diferença entre as concentrações dos hidrolisados proteicos e controle, porém o hidrolisado de amaranto em 1,0 mg/ml demonstrou uma tendência em diminuir a absorção de colesterol (p = 0,05). Na exposição das células Caco-2 aos peptídeos por 2h, houve uma diminuição nas concentrações de RNAm dos genes ABCA1, NPC1L1, AMPK, HMGR e SREBP-2 nas concentrações de 3,0 mg/ml. O tempo de exposição de 12h apresentou resultados semelhantes ao tempo de 2h. Somente a expressão gênica de ABCG8foi influenciada pelo isolado proteico de amaranto no experimento in vivo. Conclusão: A partir do exposto, podemos concluir que os peptídeos do grão de amaranto influenciam o metabolismo de colesterol por mecanismos genéticos. Portanto, torna-se uma alternativa a ser introduzida na dieta de indivíduos saudáveis e em pacientes com hipercolesterolemia, visando a prevenção de agravos e como estratégia de terapia adicional no controle dos níveis de LDL-c plasmático. Contudo, mais experimentos in vivo e em humanos são necessários para estabelecer a dose efetiva para consumo. Introduction: Cardiovascular diseases are an important cause of death worldwide and hypercholesterolemia is directly related as an aggravating factor of this morbidity. Diet plays an important role in this process and some foods such as amaranth, especially its protein, have shown ability to lower plasma cholesterol. Studies suggest that this effect is related to peptides formed during the digestion of their protein, which play an important role in the regulation and modulation of lipid metabolism. The hypocholesterolemic effects, already observed, indicate the use of amaranth protein as a bioactive compound aimed to promoting health. Considering that the hypocholesterolemic effects of these peptides are complex and there are several hypotheses formulated, it is important to carry out studies to evaluate the interaction of peptides in the intestinal absorption of cholesterol and its genetic modulation. Objectives: To verify the effects of amaranth grain flour hydrolyzate on cholesterol uptake and ABCA1, ABCG1, NPC1L1, AMPK, HMGR and SREBP-2 genes modulation in Caco-2 intestinal cells, and modulation of ABCG8, HMGR, SREBP-2 genes and AMPK in hamster intestinal cells. Methodology: Amaranth was crushed, the created flour was defatted and its protein isolated, with subsequent in vitro digestion and filtration of the peptides. Three in vitro experiments were conducted with the cells: hydrolyzate permeation, cholesterol permeation and genetic expression. In the first, the amaranth protein hydrolyzate was permeated in Caco-2 cell cultures in the time of 2 hours. The permeate was collected and analyzed by LC/MS/MS. In the second, the amaranth hydrolyzate was incorporated into cholesterol micelles and incubated in cell cultures at concentrations of 1.0 mg/ml and 3.0 mg/ml in times of 2 h. Also, at concentrations of 3.0 mg/ml albumin and casein were added for comparison. Cholesterol content in the apical and basolateral portion was analyzed by HPLC. The third experiment was to evaluate the exposure of the hydrolyzate at concentrations of 0.5 mg/ml, 1.0 mg/ml and 3.0 mg/ml, in times of 2 h and 12 h. After this period, the extraction of total RNA, evaluation of yield and integrity of the material was performed; quantitative measurement of mRNA expression by RT-PCR and relative quantification of ?CT expression of the ABCA1, ABCG1, ABCG8, NPC111, AMPK, HMGR and SREBP-2 genes from Caco-2 cells and hamster intestinal tissue, collected in previous assays, were finalized. Results: In cholesterol permeation there was no difference between the concentrations of the protein hydrolysates and control, but the amaranth hydrolyzate at 1.0 mg/ml showed a tendency to decrease the cholesterol absorption (p = 0.05). Exposure of Caco-2 cells to peptides for 2 h resulted in a decrease in ABCA1, NPC111, AMPK, HMGR and SREBP-2 mRNA levels at concentrations of 3.0 mg/ml. The exposure time of 12h presented results similar to the time of 2h. Only the gene expression of ABCG8 was influenced by the amaranth protein isolate in the in vivo experiment. Conclusion: From the above, we can conclude that amaranth peptides influence the metabolism of cholesterol by genetic mechanisms. Therefore, it becomes an alternative to be introduced in the diet of healthy individuals and in patients with hypercholesterolemia, aiming at the prevention of aggravations and as a strategy of additional therapy in the control of plasma LDL-c levels. However, more studies should bedone with animals and humans to define the dose-efficiency for diet. https://doi.org/10.11606/T.6.2019.tde-10102018-075137info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:38:29Zoai:teses.usp.br:tde-10102018-075137Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T12:27:27.564668Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.pt.fl_str_mv Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
dc.title.alternative.en.fl_str_mv Effect of amaranth grain peptides (Amaranthus cruentus L.) on the mechanisms of absorption and synthesis of cholesterol
title Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
spellingShingle Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
Amanda Caroline Cardoso Corrêa Carlos Menezes
title_short Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
title_full Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
title_fullStr Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
title_full_unstemmed Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
title_sort Efeito de peptídeos do grão de amaranto (Amaranthus cruentus L.) sobre os mecanismos de absorção e síntese de colesterol
author Amanda Caroline Cardoso Corrêa Carlos Menezes
author_facet Amanda Caroline Cardoso Corrêa Carlos Menezes
author_role author
dc.contributor.advisor1.fl_str_mv Jose Alfredo Gomes Areas
dc.contributor.referee1.fl_str_mv Marisa Passarelli
dc.contributor.referee2.fl_str_mv Daniel Carvalho Pimenta
dc.contributor.referee3.fl_str_mv Marilia Cerqueira Leite Seelaender
dc.contributor.referee4.fl_str_mv Elizabeth Aparecida Ferraz da Silva Torres
dc.contributor.author.fl_str_mv Amanda Caroline Cardoso Corrêa Carlos Menezes
contributor_str_mv Jose Alfredo Gomes Areas
Marisa Passarelli
Daniel Carvalho Pimenta
Marilia Cerqueira Leite Seelaender
Elizabeth Aparecida Ferraz da Silva Torres
description Introdução: Doenças cardiovasculares constituem importante causa de morte em todo mundo e a hipercolesterolemia está diretamente relacionada como fator agravante desta morbidade. A dieta desempenha papel importante neste processo e alguns alimentos como o amaranto, especialmente sua proteína, tem mostrado capacidade de redução do colesterol plasmático. Estudos sugerem que este efeito está relacionado a peptídeos formados durante a digestão da sua proteína, os quais desempenham um papel importante na regulação e modulação do metabolismo lipídico. Os efeitos hipocolesterolêmicos, já observados, indicam o uso da proteína do amaranto como um composto bioativo direcionado para a promoção da saúde. Considerando que os efeitos hipocolesterolêmicos destes peptídeos são complexos e há diversas hipóteses formuladas, torna-se importante a realização de estudos visando avaliar a interação dos peptídeos na absorção intestinal do colesterol e da sua modulação genética. Objetivos: Verificar os efeitos do hidrolisado da farinha do grão de amaranto na absorção de colesterol e modulação de genes ABCA1, ABCG1, NPC1L1, AMPK, HMGR e SREBP-2em células Caco-2, e modulação dos genes ABCG8, HMGR, SREBP-2 e AMPKem enterócitos de hamsters. Metodologia: O amaranto foi triturado, sua farinha desengordurada e sua proteína isolada, com posterior digestão in vitro e filtração dos peptídeos. Três experimentos in vitro foram conduzidos com as células: permeação de hidrolisado, permeação de colesterol e de efeito sob a expressão gênica. No primeiro, o hidrolisado proteico de amaranto foi permeado em culturas celulares de Caco-2 no tempo de 2 horas. O permeato foi coletado e analisado por LC/MS/MS. No segundo, o hidrolisado de amaranto foi incorporado a micelas de colesterol e incubados em culturas celulares, nas concentrações de 1,0 mg/ml, e 3,0 mg/ml em tempos de 2h. Também em concentrações de 3,0 mg/ml foi adicionado albumina e caseína para efeito comparativo. O conteúdo de colesterol na porção apical e basolateral foi analisado em HPLC. O terceiro experimento foi avaliaçãoda exposição do hidrolisado, em concentrações de 0,5 mg/ml, 1,0 mg/ml e 3,0 mg/ml, em tempos de 2h e 12h. Após este período, foi realizada a extração de RNA total, avaliação de rendimento e integridade do material; medida quantitativa de expressão de RNAm por RT-PCR e quantificação relativa da expressão por ?CT dos genes ABCA1, ABCG1, ABCG8, NPC1L1, AMP1, HMGR e SREBP-2das células Caco-2 e tecido intestinal de hamsters, coletados em ensaios anteriores. Resultados: Na permeação de colesterol não houve diferença entre as concentrações dos hidrolisados proteicos e controle, porém o hidrolisado de amaranto em 1,0 mg/ml demonstrou uma tendência em diminuir a absorção de colesterol (p = 0,05). Na exposição das células Caco-2 aos peptídeos por 2h, houve uma diminuição nas concentrações de RNAm dos genes ABCA1, NPC1L1, AMPK, HMGR e SREBP-2 nas concentrações de 3,0 mg/ml. O tempo de exposição de 12h apresentou resultados semelhantes ao tempo de 2h. Somente a expressão gênica de ABCG8foi influenciada pelo isolado proteico de amaranto no experimento in vivo. Conclusão: A partir do exposto, podemos concluir que os peptídeos do grão de amaranto influenciam o metabolismo de colesterol por mecanismos genéticos. Portanto, torna-se uma alternativa a ser introduzida na dieta de indivíduos saudáveis e em pacientes com hipercolesterolemia, visando a prevenção de agravos e como estratégia de terapia adicional no controle dos níveis de LDL-c plasmático. Contudo, mais experimentos in vivo e em humanos são necessários para estabelecer a dose efetiva para consumo.
publishDate 2018
dc.date.issued.fl_str_mv 2018-10-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.6.2019.tde-10102018-075137
url https://doi.org/10.11606/T.6.2019.tde-10102018-075137
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Nutrição em Saúde Pública
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794502633959981056