Caos homoclínico no espaço dos parâmetros

Detalhes bibliográficos
Autor(a) principal: Medrano-Torricos, Rene Orlando
Data de Publicação: 2004
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032014-161800/
Resumo: Nesta tese analisamos o comportamento dinâmico, no espaço elos parâmetros, ele duas versões elo circuito eletrônico Double Scroll, descritas por sistemas, não integráveis, de equações diferenciais lineares por partes. A diferença entre esses circuitos reside na curva característica ela resistência negativa, uma contínua e a outra descontínua. O circuito Double Scroll é conhecido por apresentar comportamento caótico associado à existência ele órbitas homoclínicas. Desenvolvemos métodos numéricos para identificar distintos atratores periódicos e caóticos nesses circuitos. Realizamos um estudo completo elas variedades que esses sistemas apresentam, onde demonstramos que o circuito descontínuo não pode formar órbitas homoclínicas. Desenvolvemos um método geral para obter órbitas homoclínicas e heteroclínicas em sistemas lineares por partes. Esse método foi utilizado no circuito contínuo para identificar famílias ele órbitas homoclínicas no espaço elos parâmetros. Fazemos um estudo teórico sobre as órbitas homoclínicas, baseado no teorema ele Shilnikov, e determinamos a lei ele escala geral que descreve as acumulações elas infinitas órbitas homoclínicas no espaço elos parâmetros. Utilizando o método ele detecção ele órbitas homoclínicas, comprovamos, em distintos tipos ele órbitas homoclínicas, a validade dessa lei para o circuito Double Scroll contínuo. Além do mais, através da geometria apresentada pelas famílias ele órbitas homoclínicas que identificamos e ela teoria que permitiu demonstrar a lei ele escala, mostramos a existência ele estruturas ele órbitas homoclínicas que explicam o cenário homoclínico do espaço elos parâmetros. Essas estruturas estão presentes em todos os sistemas para os quais o teorema ele Shilnikov se aplica. Finalmente, sugerimos três experimentos para verificar a existência dessas órbitas e a relação delas com a dinâmica elo sistema.
id USP_362625dcc4730cbbb19af3d1da6aff13
oai_identifier_str oai:teses.usp.br:tde-11032014-161800
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Caos homoclínico no espaço dos parâmetrosHomoclinic chaos in the parameter spaceCircuitos eletrônicosDissipative systemElectronic circuitsSistema dissipativoNesta tese analisamos o comportamento dinâmico, no espaço elos parâmetros, ele duas versões elo circuito eletrônico Double Scroll, descritas por sistemas, não integráveis, de equações diferenciais lineares por partes. A diferença entre esses circuitos reside na curva característica ela resistência negativa, uma contínua e a outra descontínua. O circuito Double Scroll é conhecido por apresentar comportamento caótico associado à existência ele órbitas homoclínicas. Desenvolvemos métodos numéricos para identificar distintos atratores periódicos e caóticos nesses circuitos. Realizamos um estudo completo elas variedades que esses sistemas apresentam, onde demonstramos que o circuito descontínuo não pode formar órbitas homoclínicas. Desenvolvemos um método geral para obter órbitas homoclínicas e heteroclínicas em sistemas lineares por partes. Esse método foi utilizado no circuito contínuo para identificar famílias ele órbitas homoclínicas no espaço elos parâmetros. Fazemos um estudo teórico sobre as órbitas homoclínicas, baseado no teorema ele Shilnikov, e determinamos a lei ele escala geral que descreve as acumulações elas infinitas órbitas homoclínicas no espaço elos parâmetros. Utilizando o método ele detecção ele órbitas homoclínicas, comprovamos, em distintos tipos ele órbitas homoclínicas, a validade dessa lei para o circuito Double Scroll contínuo. Além do mais, através da geometria apresentada pelas famílias ele órbitas homoclínicas que identificamos e ela teoria que permitiu demonstrar a lei ele escala, mostramos a existência ele estruturas ele órbitas homoclínicas que explicam o cenário homoclínico do espaço elos parâmetros. Essas estruturas estão presentes em todos os sistemas para os quais o teorema ele Shilnikov se aplica. Finalmente, sugerimos três experimentos para verificar a existência dessas órbitas e a relação delas com a dinâmica elo sistema.In this thesis we study the dynamic behavior, in the parameter space, of two versions of the Double Scroll electronic circuit, whose flows are represented by piecewise non integrable systems. The difference between these circuits is the characteristic curves of the negative resistance, one continuous and the other discontinuous. The Double Scroll circuit is known to present chaotic behavior associated to the existence of homoclinic orbits. We develop numerical methods to identify periodic and chaotic attractors in these circuits. We present a complete study of these systems manifolds and demonstrate that the discontinuous circuit cannot form homoclinic orbits. We develop a general method to obtain homoclinic and heteroclinic orbits in piecewise linear systems. This method was used in the continuous circuit to identify homoclinic orbit families in the parameter space. We develop a theoretical study about the homoclinic orbits based on the Shilnikov theorem, determining a general scaling law that describes the accumulations of the infinity homoclinic orbits in the parameter space. Using the detecting homoclinic orbits method, we show the validity of this law for the continuous Double Scroll circuit. Moreover, combining the geometry of the homoclinic or bit families with the scaling law, we show the existence of homoclinic orbits structures of the homoclinic orbits that explain the homoclinic scenario in the parameter space. These structures are present in all systems for which we can apply the Shilnikov theorem. Finally, we suggest three experiments to verify the existence of these orbits and their relation with the system dynamics.Biblioteca Digitais de Teses e Dissertações da USPCaldas, Ibere LuizMedrano-Torricos, Rene Orlando2004-11-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032014-161800/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-11032014-161800Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Caos homoclínico no espaço dos parâmetros
Homoclinic chaos in the parameter space
title Caos homoclínico no espaço dos parâmetros
spellingShingle Caos homoclínico no espaço dos parâmetros
Medrano-Torricos, Rene Orlando
Circuitos eletrônicos
Dissipative system
Electronic circuits
Sistema dissipativo
title_short Caos homoclínico no espaço dos parâmetros
title_full Caos homoclínico no espaço dos parâmetros
title_fullStr Caos homoclínico no espaço dos parâmetros
title_full_unstemmed Caos homoclínico no espaço dos parâmetros
title_sort Caos homoclínico no espaço dos parâmetros
author Medrano-Torricos, Rene Orlando
author_facet Medrano-Torricos, Rene Orlando
author_role author
dc.contributor.none.fl_str_mv Caldas, Ibere Luiz
dc.contributor.author.fl_str_mv Medrano-Torricos, Rene Orlando
dc.subject.por.fl_str_mv Circuitos eletrônicos
Dissipative system
Electronic circuits
Sistema dissipativo
topic Circuitos eletrônicos
Dissipative system
Electronic circuits
Sistema dissipativo
description Nesta tese analisamos o comportamento dinâmico, no espaço elos parâmetros, ele duas versões elo circuito eletrônico Double Scroll, descritas por sistemas, não integráveis, de equações diferenciais lineares por partes. A diferença entre esses circuitos reside na curva característica ela resistência negativa, uma contínua e a outra descontínua. O circuito Double Scroll é conhecido por apresentar comportamento caótico associado à existência ele órbitas homoclínicas. Desenvolvemos métodos numéricos para identificar distintos atratores periódicos e caóticos nesses circuitos. Realizamos um estudo completo elas variedades que esses sistemas apresentam, onde demonstramos que o circuito descontínuo não pode formar órbitas homoclínicas. Desenvolvemos um método geral para obter órbitas homoclínicas e heteroclínicas em sistemas lineares por partes. Esse método foi utilizado no circuito contínuo para identificar famílias ele órbitas homoclínicas no espaço elos parâmetros. Fazemos um estudo teórico sobre as órbitas homoclínicas, baseado no teorema ele Shilnikov, e determinamos a lei ele escala geral que descreve as acumulações elas infinitas órbitas homoclínicas no espaço elos parâmetros. Utilizando o método ele detecção ele órbitas homoclínicas, comprovamos, em distintos tipos ele órbitas homoclínicas, a validade dessa lei para o circuito Double Scroll contínuo. Além do mais, através da geometria apresentada pelas famílias ele órbitas homoclínicas que identificamos e ela teoria que permitiu demonstrar a lei ele escala, mostramos a existência ele estruturas ele órbitas homoclínicas que explicam o cenário homoclínico do espaço elos parâmetros. Essas estruturas estão presentes em todos os sistemas para os quais o teorema ele Shilnikov se aplica. Finalmente, sugerimos três experimentos para verificar a existência dessas órbitas e a relação delas com a dinâmica elo sistema.
publishDate 2004
dc.date.none.fl_str_mv 2004-11-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032014-161800/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032014-161800/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256856207032320