Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.

Detalhes bibliográficos
Autor(a) principal: Sassi, Renato José
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032007-163930/
Resumo: As bases de dados do mundo real contêm grandes volumes de dados, e entre eles escondem-se diversas relações difíceis de descobrir através de métodos tradicionais como planilhas de cálculo e relatórios informativos operacionais. Desta forma, os sistemas de descoberta de conhecimento (Knowledge Discovery in Data Bases - KDD) surgem como uma possível solução para dessas relações extrair conhecimento que possa ser aplicado na tomada de decisão em organizações. Mesmo utilizando um KDD, tal atividade pode continuar sendo extremamente difícil devido à grande quantidade de dados que deve ser processada. Assim, nem todos os dados que compõem essas bases servem para um sistema descobrir conhecimento. Em geral, costuma-se pré-processar os dados antes de serem apresentados ao KDD, buscando reduzir a sua quantidade e também selecionar os dados mais relevantes que serão utilizados pelo sistema. Este trabalho propõe o desenvolvimento, aplicação e análise de uma Arquitetura Híbrida formada pela combinação da Teoria dos Rough Sets (Teoria dos Conjuntos Aproximados) com uma arquitetura de rede neural artificial denominada Mapas Auto-Organizáveis ou Self-Organizing Maps (SOM) para descoberta de conhecimento. O objetivo é verificar o desempenho da Arquitetura Híbrida proposta na geração de clusters (agrupamentos) em bases de dados. Em particular, alguns dos experimentos significativos foram feitos para apoiar a tomada de decisão em organizações.
id USP_371449c64cc587560d628fc1921bce1f
oai_identifier_str oai:teses.usp.br:tde-16032007-163930
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.An hybrid architecture for the knowledge discovery in databases: rough sets theory and artificial neural nets self-organizing maps.Descoberta de conhecimentoHybrids systemsKnowledge discovery systemsNeural networksRedes neuraisSistemas híbridosAs bases de dados do mundo real contêm grandes volumes de dados, e entre eles escondem-se diversas relações difíceis de descobrir através de métodos tradicionais como planilhas de cálculo e relatórios informativos operacionais. Desta forma, os sistemas de descoberta de conhecimento (Knowledge Discovery in Data Bases - KDD) surgem como uma possível solução para dessas relações extrair conhecimento que possa ser aplicado na tomada de decisão em organizações. Mesmo utilizando um KDD, tal atividade pode continuar sendo extremamente difícil devido à grande quantidade de dados que deve ser processada. Assim, nem todos os dados que compõem essas bases servem para um sistema descobrir conhecimento. Em geral, costuma-se pré-processar os dados antes de serem apresentados ao KDD, buscando reduzir a sua quantidade e também selecionar os dados mais relevantes que serão utilizados pelo sistema. Este trabalho propõe o desenvolvimento, aplicação e análise de uma Arquitetura Híbrida formada pela combinação da Teoria dos Rough Sets (Teoria dos Conjuntos Aproximados) com uma arquitetura de rede neural artificial denominada Mapas Auto-Organizáveis ou Self-Organizing Maps (SOM) para descoberta de conhecimento. O objetivo é verificar o desempenho da Arquitetura Híbrida proposta na geração de clusters (agrupamentos) em bases de dados. Em particular, alguns dos experimentos significativos foram feitos para apoiar a tomada de decisão em organizações.Databases of the real world contain a huge amount of data within which several relations are hidden. These relations are difficult to discover by means of traditional methods such as worksheets and operational informative reports. Therefore, the knowledge discovery systems (KDD) appear as a possible solution to extract, from such relations, knowledge to be applied in decision taking. Even using a KDD system, such activity may still continue to be extremely difficult due to the huge amount of data to be processed. Thus, not all data which are part of this base will be useful for a system to discover knowledge. In general, data are usually previously processed before being presented to a knowledge discovery system in order to reduce their quantity and also to select the most relevant data to be used by the system. This research presents the development, application and analysis of an hybrid architecture formed by the combination of the Rough Sets Theory with an artificial neural net architecture named Self-Organizing Maps (SOM) to discover knowledge. The objective is to verify the performance of the hybrid architecture proposed in the generation of clusters in databases. In particular, some of the important performed experiments targeted the decision taking in organizations.Biblioteca Digitais de Teses e Dissertações da USPDel Moral Hernandez, EmilioSassi, Renato José2006-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032007-163930/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-16032007-163930Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
An hybrid architecture for the knowledge discovery in databases: rough sets theory and artificial neural nets self-organizing maps.
title Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
spellingShingle Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
Sassi, Renato José
Descoberta de conhecimento
Hybrids systems
Knowledge discovery systems
Neural networks
Redes neurais
Sistemas híbridos
title_short Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
title_full Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
title_fullStr Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
title_full_unstemmed Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
title_sort Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis.
author Sassi, Renato José
author_facet Sassi, Renato José
author_role author
dc.contributor.none.fl_str_mv Del Moral Hernandez, Emilio
dc.contributor.author.fl_str_mv Sassi, Renato José
dc.subject.por.fl_str_mv Descoberta de conhecimento
Hybrids systems
Knowledge discovery systems
Neural networks
Redes neurais
Sistemas híbridos
topic Descoberta de conhecimento
Hybrids systems
Knowledge discovery systems
Neural networks
Redes neurais
Sistemas híbridos
description As bases de dados do mundo real contêm grandes volumes de dados, e entre eles escondem-se diversas relações difíceis de descobrir através de métodos tradicionais como planilhas de cálculo e relatórios informativos operacionais. Desta forma, os sistemas de descoberta de conhecimento (Knowledge Discovery in Data Bases - KDD) surgem como uma possível solução para dessas relações extrair conhecimento que possa ser aplicado na tomada de decisão em organizações. Mesmo utilizando um KDD, tal atividade pode continuar sendo extremamente difícil devido à grande quantidade de dados que deve ser processada. Assim, nem todos os dados que compõem essas bases servem para um sistema descobrir conhecimento. Em geral, costuma-se pré-processar os dados antes de serem apresentados ao KDD, buscando reduzir a sua quantidade e também selecionar os dados mais relevantes que serão utilizados pelo sistema. Este trabalho propõe o desenvolvimento, aplicação e análise de uma Arquitetura Híbrida formada pela combinação da Teoria dos Rough Sets (Teoria dos Conjuntos Aproximados) com uma arquitetura de rede neural artificial denominada Mapas Auto-Organizáveis ou Self-Organizing Maps (SOM) para descoberta de conhecimento. O objetivo é verificar o desempenho da Arquitetura Híbrida proposta na geração de clusters (agrupamentos) em bases de dados. Em particular, alguns dos experimentos significativos foram feitos para apoiar a tomada de decisão em organizações.
publishDate 2006
dc.date.none.fl_str_mv 2006-11-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032007-163930/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-16032007-163930/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257014760112128