Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11141/tde-21052021-094731/ |
Resumo: | The citrus sector is one of the most traditional in Brazilian agribusiness and accounts for 34% of orange production worldwide. However, together with the competitiveness of the current market, orange production has been greatly impacted by climatic variations. In this context, we notice the importance of tools that analyze orange juice on a large scale and quickly in scenarios of high productivity, as well as ensuring quality control in times of low product supply. Related to the quality of orange juice, there are some factors such as the use of conservation methods and the presence of sensory attributes. Among food preservation methods, irradiation can be an alternative in the conservation of fruit juices, but measuring the effects of irradiation is a challenge. Regarding the sensory attributes, the method of quantitative descriptive analysis (ADQ) is capable of providing a complete sensory description of a product, however it requires a long period of training of tasters. In this context, instrumental analyzes such as time domain nuclear magnetic resonance (TD-NMR) and medium-infrared (MIR) and near (NIR) spectroscopy have been explored in intact fruits and juices demonstrating a correlation with quality parameters associated with sensory perception and control of processes. However, clean, fast and non-destructive technologies in combination with irradiation processes and sensory attributes were weakly explored in the literature. Therefore, the present study discusses in the first chapter: the use of non-destructive instrumental methods such as TD-NMR, MIR and NIR to analyze irradiated orange juice. In the following chapters, the studies were directed to assess the quality of orange juice using the ADQ method and its relationship with instrumental methods (TD-NMR, MIR and NIR). The results demonstrated a good performance in the classification of non-irradiated and irradiated samples using the spectral data of MIR and TD-NMR. The study of the relationship between non-destructive instrumental methods and ADQ showed better performance in the classification models for the descriptors yellow, natural flavor, aroma freshness, aroma and flavor cooked with predictive skills valid between 70% and 87% using the MIR spectral data. On the other hand, the classification models based on TD-NMR data reached 79% of correctness in the classification of yellow color and 72% in the body classification of orange juice. Thus, the extensive study of the analytical methods of NMR-DT, MIR and NIR showed great advances in the field of study of the quality of fruit juices and quick and clean analyzes coupled with multivariate statistical techniques for food analysis. |
id |
USP_3738f0e11048c2865d563f23b325b5bf |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21052021-094731 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juiceUso de técnicas instrumentais não destrutivas para avaliar os efeitos da irradiação gama, qualidade e atributos sensoriais em suco de laranjaAnálise sensorialChemometricsCitrosCitrusConservação por irradiaçãoIrradiation conservationMIRMIRNIRNIRQuimiometriaRMN-DTSensory analysisTD-NMRThe citrus sector is one of the most traditional in Brazilian agribusiness and accounts for 34% of orange production worldwide. However, together with the competitiveness of the current market, orange production has been greatly impacted by climatic variations. In this context, we notice the importance of tools that analyze orange juice on a large scale and quickly in scenarios of high productivity, as well as ensuring quality control in times of low product supply. Related to the quality of orange juice, there are some factors such as the use of conservation methods and the presence of sensory attributes. Among food preservation methods, irradiation can be an alternative in the conservation of fruit juices, but measuring the effects of irradiation is a challenge. Regarding the sensory attributes, the method of quantitative descriptive analysis (ADQ) is capable of providing a complete sensory description of a product, however it requires a long period of training of tasters. In this context, instrumental analyzes such as time domain nuclear magnetic resonance (TD-NMR) and medium-infrared (MIR) and near (NIR) spectroscopy have been explored in intact fruits and juices demonstrating a correlation with quality parameters associated with sensory perception and control of processes. However, clean, fast and non-destructive technologies in combination with irradiation processes and sensory attributes were weakly explored in the literature. Therefore, the present study discusses in the first chapter: the use of non-destructive instrumental methods such as TD-NMR, MIR and NIR to analyze irradiated orange juice. In the following chapters, the studies were directed to assess the quality of orange juice using the ADQ method and its relationship with instrumental methods (TD-NMR, MIR and NIR). The results demonstrated a good performance in the classification of non-irradiated and irradiated samples using the spectral data of MIR and TD-NMR. The study of the relationship between non-destructive instrumental methods and ADQ showed better performance in the classification models for the descriptors yellow, natural flavor, aroma freshness, aroma and flavor cooked with predictive skills valid between 70% and 87% using the MIR spectral data. On the other hand, the classification models based on TD-NMR data reached 79% of correctness in the classification of yellow color and 72% in the body classification of orange juice. Thus, the extensive study of the analytical methods of NMR-DT, MIR and NIR showed great advances in the field of study of the quality of fruit juices and quick and clean analyzes coupled with multivariate statistical techniques for food analysis.O setor citrícola é um dos mais tradicionais do agronegócio brasileiro e responde por 34% da produção de laranja em todo mundo. Entretanto, juntamente com a competitividade do mercado atual, a produção de laranja vem sendo muito impactada pelas variações climáticas. Neste contexto, nota-se a importância de ferramentas que analisem o suco de laranja em grandes escalas e de forma rápida em cenários de grande produtividade, bem como garantir o controle de qualidade em tempos de baixa oferta do produto. Relacionada à qualidade do suco de laranja, encontram-se alguns fatores como uso de métodos de conservação e também a presença de atributos sensoriais. Entre os métodos de conservação de alimentos, a irradiação pode ser uma alternativa na conservação de sucos de frutas, porém medir os efeitos da irradiação é um desafio. Referente aos atributos sensoriais, o método de análise descritiva quantitativa (ADQ) é capaz de proporcionar a descrição sensorial completa de um produto, entretanto requer um longo período de treinamento de provadores. Neste contexto, análises instrumentais como ressonância magnética nuclear no domínio do tempo (RMN-DT) e espectroscopia de infravermelho médio (MIR) e próximo (NIR) vêm sendo exploradas em frutos intactos e sucos demonstrando correlação com parâmetros de qualidade associados à percepção sensorial e controle de processos. Entretanto, as tecnologias limpas, rápidas e não destrutivas pouco foram relacionadas ao processo de irradiação e atributos sensoriais. Portanto, o presente estudo discute no primeiro capítulo: o uso de métodos instrumentais não destrutivos como RMN-DT, MIR e NIR para analisar suco de laranja irradiado. Nos demais capítulos os estudos foram direcionados para avaliação da qualidade de suco de laranja pelo método de ADQ e sua relação com os métodos instrumentais (RMN-DT, MIR e NIR). Os resultados evidenciaram desempenho na classificação de amostras não-irradiadas e irradiadas utilizando os dados espectrais de MIR e RMN-DT. O estudo de relação entre métodos instrumentais não destrutivos e ADQ mostrou melhor desempenho nos modelos de classificação para os descritores amarelo sabor natural, frescor do aroma, aroma e sabor cozido com habilidades preditivas válidas entre 70 e 87% utilizando os dados espectrais do MIR. Por outro lado, os modelos de classificação baseados em dados de RMN-DT alcançaram 79%de acerto na classificação da cor amarela e 72% na classificação corporal do suco de laranja. Desta forma, o extenso estudo dos métodos analíticos de NIR, MIR e RMN-DT apresentaram grandes avanços no campo de estudo da qualidade de sucos de frutas e análises rápidas e limpas acopladas a técnicas estatísticas multivariadas para análise de alimentos.Biblioteca Digitais de Teses e Dissertações da USPFerreira, Marcos DavidSpoto, Marta Helena FilletBizzani, Marilia2021-03-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11141/tde-21052021-094731/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-24T20:54:02Zoai:teses.usp.br:tde-21052021-094731Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-24T20:54:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice Uso de técnicas instrumentais não destrutivas para avaliar os efeitos da irradiação gama, qualidade e atributos sensoriais em suco de laranja |
title |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice |
spellingShingle |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice Bizzani, Marilia Análise sensorial Chemometrics Citros Citrus Conservação por irradiação Irradiation conservation MIR MIR NIR NIR Quimiometria RMN-DT Sensory analysis TD-NMR |
title_short |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice |
title_full |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice |
title_fullStr |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice |
title_full_unstemmed |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice |
title_sort |
Use of non-destructive instrumental techniques to evaluate effects of gamma irradiation, quality and sensory attributes in orange juice |
author |
Bizzani, Marilia |
author_facet |
Bizzani, Marilia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Marcos David Spoto, Marta Helena Fillet |
dc.contributor.author.fl_str_mv |
Bizzani, Marilia |
dc.subject.por.fl_str_mv |
Análise sensorial Chemometrics Citros Citrus Conservação por irradiação Irradiation conservation MIR MIR NIR NIR Quimiometria RMN-DT Sensory analysis TD-NMR |
topic |
Análise sensorial Chemometrics Citros Citrus Conservação por irradiação Irradiation conservation MIR MIR NIR NIR Quimiometria RMN-DT Sensory analysis TD-NMR |
description |
The citrus sector is one of the most traditional in Brazilian agribusiness and accounts for 34% of orange production worldwide. However, together with the competitiveness of the current market, orange production has been greatly impacted by climatic variations. In this context, we notice the importance of tools that analyze orange juice on a large scale and quickly in scenarios of high productivity, as well as ensuring quality control in times of low product supply. Related to the quality of orange juice, there are some factors such as the use of conservation methods and the presence of sensory attributes. Among food preservation methods, irradiation can be an alternative in the conservation of fruit juices, but measuring the effects of irradiation is a challenge. Regarding the sensory attributes, the method of quantitative descriptive analysis (ADQ) is capable of providing a complete sensory description of a product, however it requires a long period of training of tasters. In this context, instrumental analyzes such as time domain nuclear magnetic resonance (TD-NMR) and medium-infrared (MIR) and near (NIR) spectroscopy have been explored in intact fruits and juices demonstrating a correlation with quality parameters associated with sensory perception and control of processes. However, clean, fast and non-destructive technologies in combination with irradiation processes and sensory attributes were weakly explored in the literature. Therefore, the present study discusses in the first chapter: the use of non-destructive instrumental methods such as TD-NMR, MIR and NIR to analyze irradiated orange juice. In the following chapters, the studies were directed to assess the quality of orange juice using the ADQ method and its relationship with instrumental methods (TD-NMR, MIR and NIR). The results demonstrated a good performance in the classification of non-irradiated and irradiated samples using the spectral data of MIR and TD-NMR. The study of the relationship between non-destructive instrumental methods and ADQ showed better performance in the classification models for the descriptors yellow, natural flavor, aroma freshness, aroma and flavor cooked with predictive skills valid between 70% and 87% using the MIR spectral data. On the other hand, the classification models based on TD-NMR data reached 79% of correctness in the classification of yellow color and 72% in the body classification of orange juice. Thus, the extensive study of the analytical methods of NMR-DT, MIR and NIR showed great advances in the field of study of the quality of fruit juices and quick and clean analyzes coupled with multivariate statistical techniques for food analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11141/tde-21052021-094731/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11141/tde-21052021-094731/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257239763550208 |