Análise hidrológica utilizando redes neurais para previsão de séries de vazões

Detalhes bibliográficos
Autor(a) principal: Yoneda, Sergio Luis
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-13052014-110534/
Resumo: O estudo de inventário tem por objetivo estimar o potencial hidroelétrico de rios ou bacias, analisando várias alternativas propostas de partição de quedas, sendo que cada alternativa contém um conjunto de aproveitamentos hidroelétricos. Essas alternativas são então estudadas individualmente para definição da alternativa ótima, ou seja, a que tem melhor custo beneficio e ao mesmo tempo cause menos danos ambientais. Para essa análise necessitamos calcular a potência de cada aproveitamento específico, assim como a energia gerada, para isso então precisamos conhecer a vazão do rio em estudo, no local desses aproveitamentos. Como a vazão dos rios varia com o tempo, pois depende de variáveis como clima, geologia dos solos, desmatamento, entre outras, se recomenda usar nos cálculos séries longas de vazões médias com no mínimo 30 anos de dados, o problema é que em muitos casos não temos essas séries ou temos séries menores e incompletas, nesse caso então necessitamos estimar os valores ausentes e ruidosos utilizando os dados de estações fluviométricas próximas, para depois transportá-las para o aproveitamento em estudo, para isso utilizamos de técnicas estatísticas de correlação. A ideia nesse trabalho é de utilizarmos redes neurais artificiais ao invés das técnicas convencionais e comparar os resultados obtidos.
id USP_37a34bb64e321ba89501d681dccf2ca3
oai_identifier_str oai:teses.usp.br:tde-13052014-110534
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise hidrológica utilizando redes neurais para previsão de séries de vazõesHydrologic analysis using Artificial Neural Networks for time series forecasting streamflowArtificial neural networkEstações fluviométricasHydroelectric power plantsInventários de riosInventories of riversRedes neurais artificiaisSéries de vazõesStream flow seriesStream gauged stationsUsinas hidrelétricasO estudo de inventário tem por objetivo estimar o potencial hidroelétrico de rios ou bacias, analisando várias alternativas propostas de partição de quedas, sendo que cada alternativa contém um conjunto de aproveitamentos hidroelétricos. Essas alternativas são então estudadas individualmente para definição da alternativa ótima, ou seja, a que tem melhor custo beneficio e ao mesmo tempo cause menos danos ambientais. Para essa análise necessitamos calcular a potência de cada aproveitamento específico, assim como a energia gerada, para isso então precisamos conhecer a vazão do rio em estudo, no local desses aproveitamentos. Como a vazão dos rios varia com o tempo, pois depende de variáveis como clima, geologia dos solos, desmatamento, entre outras, se recomenda usar nos cálculos séries longas de vazões médias com no mínimo 30 anos de dados, o problema é que em muitos casos não temos essas séries ou temos séries menores e incompletas, nesse caso então necessitamos estimar os valores ausentes e ruidosos utilizando os dados de estações fluviométricas próximas, para depois transportá-las para o aproveitamento em estudo, para isso utilizamos de técnicas estatísticas de correlação. A ideia nesse trabalho é de utilizarmos redes neurais artificiais ao invés das técnicas convencionais e comparar os resultados obtidos.The inventory study aims to estimate the hydropower potential of rivers or basins, analyzing several alternative proposals for partition of falls, each of which contains a set of alternative hydroelectric developments. These alternatives are then individually analyzed to define the optimal alternative, namely that which has the best cost benefit while causing less environmental damage. For this analysis we need to calculate the power of each specific use, as well as the energy generated for that then we need to know the flow of the river under study, the location of these usages. As the river flow varies with time because it depends on variables such as climate, geology, soils, deforestation, among others, we recommend using the long series of calculations mean flow at least 30 years of data, the problem is that in many cases we do not have these series or have smaller and incomplete series, in this case then we need to estimate the missing values and noisy data using next gauged stations, and then transport them to use in the study, for this we use statistical correlation techniques. The idea is that we use work instead of the conventional Artificial Neural Network techniques and compare the results.Biblioteca Digitais de Teses e Dissertações da USPFlauzino, Rogério AndradeYoneda, Sergio Luis2014-03-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18153/tde-13052014-110534/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-13052014-110534Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise hidrológica utilizando redes neurais para previsão de séries de vazões
Hydrologic analysis using Artificial Neural Networks for time series forecasting streamflow
title Análise hidrológica utilizando redes neurais para previsão de séries de vazões
spellingShingle Análise hidrológica utilizando redes neurais para previsão de séries de vazões
Yoneda, Sergio Luis
Artificial neural network
Estações fluviométricas
Hydroelectric power plants
Inventários de rios
Inventories of rivers
Redes neurais artificiais
Séries de vazões
Stream flow series
Stream gauged stations
Usinas hidrelétricas
title_short Análise hidrológica utilizando redes neurais para previsão de séries de vazões
title_full Análise hidrológica utilizando redes neurais para previsão de séries de vazões
title_fullStr Análise hidrológica utilizando redes neurais para previsão de séries de vazões
title_full_unstemmed Análise hidrológica utilizando redes neurais para previsão de séries de vazões
title_sort Análise hidrológica utilizando redes neurais para previsão de séries de vazões
author Yoneda, Sergio Luis
author_facet Yoneda, Sergio Luis
author_role author
dc.contributor.none.fl_str_mv Flauzino, Rogério Andrade
dc.contributor.author.fl_str_mv Yoneda, Sergio Luis
dc.subject.por.fl_str_mv Artificial neural network
Estações fluviométricas
Hydroelectric power plants
Inventários de rios
Inventories of rivers
Redes neurais artificiais
Séries de vazões
Stream flow series
Stream gauged stations
Usinas hidrelétricas
topic Artificial neural network
Estações fluviométricas
Hydroelectric power plants
Inventários de rios
Inventories of rivers
Redes neurais artificiais
Séries de vazões
Stream flow series
Stream gauged stations
Usinas hidrelétricas
description O estudo de inventário tem por objetivo estimar o potencial hidroelétrico de rios ou bacias, analisando várias alternativas propostas de partição de quedas, sendo que cada alternativa contém um conjunto de aproveitamentos hidroelétricos. Essas alternativas são então estudadas individualmente para definição da alternativa ótima, ou seja, a que tem melhor custo beneficio e ao mesmo tempo cause menos danos ambientais. Para essa análise necessitamos calcular a potência de cada aproveitamento específico, assim como a energia gerada, para isso então precisamos conhecer a vazão do rio em estudo, no local desses aproveitamentos. Como a vazão dos rios varia com o tempo, pois depende de variáveis como clima, geologia dos solos, desmatamento, entre outras, se recomenda usar nos cálculos séries longas de vazões médias com no mínimo 30 anos de dados, o problema é que em muitos casos não temos essas séries ou temos séries menores e incompletas, nesse caso então necessitamos estimar os valores ausentes e ruidosos utilizando os dados de estações fluviométricas próximas, para depois transportá-las para o aproveitamento em estudo, para isso utilizamos de técnicas estatísticas de correlação. A ideia nesse trabalho é de utilizarmos redes neurais artificiais ao invés das técnicas convencionais e comparar os resultados obtidos.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18153/tde-13052014-110534/
url http://www.teses.usp.br/teses/disponiveis/18/18153/tde-13052014-110534/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256933230182400