Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23092008-091215/ |
Resumo: | O assunto principal deste trabalho é qualificar, quantificar e implementar o comportamento numérico de estruturas discretizadas através do método dos elementos finitos. Serão abordados apenas os elementos lineares unidimensionais dinâmicos, porém a aplicabilidade da formulação proposta pode se estender para elementos bi e tridimensionais lineares dinâmicos. Inicia-se com uma introdução ao tema. Com certo desenvolvimento matemático, pode-se isolar analiticamente a parcela relacionada ao erro numérico. Elevando a ordem do erro de truncamento, obtém-se precisão elevada na resposta numérica. Inspirado no integrador temporal de Newmark, projetam-se elementos que apresentam estabilidade incondicional para os chamados efeitos espúrios. O efeito evanescente é um fenômeno espúrio onde a onda se propaga ao longo da estrutura acompanhada de um amortecimento puramente numérico ao longo do domínio do espaço. Outro efeito analisado é a reflexão espúria. Quando dois elementos adjacentes têm comprimentos diferentes, surge uma onda de reflexão (ou duas, no caso do elemento de viga) na interface deles. Tal onda, também de origem puramente matemática, existe devido à diferença entre as massas e as rigidezes absolutas dos elementos envolvidos, independente do fato de que eles tenham as mesmas características físicas. A relação entre o incremento de tempo e o período de oscilação é convenientemente empregada como principal parâmetro para quantificar a discretização no domínio temporal. No domínio do espaço, a relação empregada é entre o comprimento do elemento e o comprimento de onda. |
id |
USP_3845276b16aeb2a4df805afd4bc4834f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23092008-091215 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúriasHigh order mass matrix, velocity dispersion and spurious wave reflectionDinâmica estruturalElementos finitosEvanescent wavesFinite elementNumerical precisionOndas espúriasOndas evanescentesPrecisão numéricaSpurious wave reflectionsStructural dynamicsTimoshenkoTimoshenkoO assunto principal deste trabalho é qualificar, quantificar e implementar o comportamento numérico de estruturas discretizadas através do método dos elementos finitos. Serão abordados apenas os elementos lineares unidimensionais dinâmicos, porém a aplicabilidade da formulação proposta pode se estender para elementos bi e tridimensionais lineares dinâmicos. Inicia-se com uma introdução ao tema. Com certo desenvolvimento matemático, pode-se isolar analiticamente a parcela relacionada ao erro numérico. Elevando a ordem do erro de truncamento, obtém-se precisão elevada na resposta numérica. Inspirado no integrador temporal de Newmark, projetam-se elementos que apresentam estabilidade incondicional para os chamados efeitos espúrios. O efeito evanescente é um fenômeno espúrio onde a onda se propaga ao longo da estrutura acompanhada de um amortecimento puramente numérico ao longo do domínio do espaço. Outro efeito analisado é a reflexão espúria. Quando dois elementos adjacentes têm comprimentos diferentes, surge uma onda de reflexão (ou duas, no caso do elemento de viga) na interface deles. Tal onda, também de origem puramente matemática, existe devido à diferença entre as massas e as rigidezes absolutas dos elementos envolvidos, independente do fato de que eles tenham as mesmas características físicas. A relação entre o incremento de tempo e o período de oscilação é convenientemente empregada como principal parâmetro para quantificar a discretização no domínio temporal. No domínio do espaço, a relação empregada é entre o comprimento do elemento e o comprimento de onda.The main subject of this work is to qualify, quantify and implement the numerical behavior of discrete structures through the finite element method. It will be investigated only the dynamic onedimensional linear elements, but the applicability of the proposed formulation can be extended to the bi and tri-dimensional cases. It begins with an introduction to the theme. With some mathematical development, the related numerical error can be isolated analytically. Once the truncation error is isolate, a high precision numerical response is obtained. Inspired in the Newmark time integrator, unconditionally stable elements for spurious effects are idealized. The evanescent effect is a spurious phenomenon where the wave propagates along the structure subjected to a numerical damping in the spatial domain. Another effect analyzed here is the spurious wave reflection. When two adjacent elements have different lengths, a reflected wave exists (two waves for the beam element) at their interface. This wave, which meaning is purely mathematical, exists due to the difference of their absolute mass and stiffness between the finite elements involved, even when both elements have the same physical properties. The rate between the time increment and the period of oscillation is conveniently employed as the main parameter to quantify the time discretization. In the spatial domain, the used parameter is the relation between the element and the wave length.Biblioteca Digitais de Teses e Dissertações da USPLaier, José EliasNoronha Neto, Celso de Carvalho2008-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18134/tde-23092008-091215/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:56Zoai:teses.usp.br:tde-23092008-091215Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias High order mass matrix, velocity dispersion and spurious wave reflection |
title |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias |
spellingShingle |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias Noronha Neto, Celso de Carvalho Dinâmica estrutural Elementos finitos Evanescent waves Finite element Numerical precision Ondas espúrias Ondas evanescentes Precisão numérica Spurious wave reflections Structural dynamics Timoshenko Timoshenko |
title_short |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias |
title_full |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias |
title_fullStr |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias |
title_full_unstemmed |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias |
title_sort |
Matriz de massa de ordem elevada, dispersão de velocidades e reflexões espúrias |
author |
Noronha Neto, Celso de Carvalho |
author_facet |
Noronha Neto, Celso de Carvalho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Laier, José Elias |
dc.contributor.author.fl_str_mv |
Noronha Neto, Celso de Carvalho |
dc.subject.por.fl_str_mv |
Dinâmica estrutural Elementos finitos Evanescent waves Finite element Numerical precision Ondas espúrias Ondas evanescentes Precisão numérica Spurious wave reflections Structural dynamics Timoshenko Timoshenko |
topic |
Dinâmica estrutural Elementos finitos Evanescent waves Finite element Numerical precision Ondas espúrias Ondas evanescentes Precisão numérica Spurious wave reflections Structural dynamics Timoshenko Timoshenko |
description |
O assunto principal deste trabalho é qualificar, quantificar e implementar o comportamento numérico de estruturas discretizadas através do método dos elementos finitos. Serão abordados apenas os elementos lineares unidimensionais dinâmicos, porém a aplicabilidade da formulação proposta pode se estender para elementos bi e tridimensionais lineares dinâmicos. Inicia-se com uma introdução ao tema. Com certo desenvolvimento matemático, pode-se isolar analiticamente a parcela relacionada ao erro numérico. Elevando a ordem do erro de truncamento, obtém-se precisão elevada na resposta numérica. Inspirado no integrador temporal de Newmark, projetam-se elementos que apresentam estabilidade incondicional para os chamados efeitos espúrios. O efeito evanescente é um fenômeno espúrio onde a onda se propaga ao longo da estrutura acompanhada de um amortecimento puramente numérico ao longo do domínio do espaço. Outro efeito analisado é a reflexão espúria. Quando dois elementos adjacentes têm comprimentos diferentes, surge uma onda de reflexão (ou duas, no caso do elemento de viga) na interface deles. Tal onda, também de origem puramente matemática, existe devido à diferença entre as massas e as rigidezes absolutas dos elementos envolvidos, independente do fato de que eles tenham as mesmas características físicas. A relação entre o incremento de tempo e o período de oscilação é convenientemente empregada como principal parâmetro para quantificar a discretização no domínio temporal. No domínio do espaço, a relação empregada é entre o comprimento do elemento e o comprimento de onda. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-05-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23092008-091215/ |
url |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23092008-091215/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257371016953856 |