Online convex optimization: algorithms, learning, and duality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062019-165924/ |
Resumo: | Online Convex Optimization (OCO) is a field in the intersection of game theory, optimization, and machine learning which has been receiving increasing attention due to its recent applications to a wide range of topics such as complexity theory and graph sparsification. Besides the usually simple description and implementation of OCO algorithms, a lot of this recent success is due to a deepening of our understanding of the OCO setting and their algorithms by using cornerstone ideas from convex analysis and optimization such as the powerful results from convex duality theory. In this text we present a mostly self-contained introduction to the field of online convex optimization. We first describe the online learning and online convex optimization settings, proposing an alternative way to formalize both of them so we can make formal claims in a clear and unambiguous fashion while not cluttering the readers understanding. We then present an overview of the main concepts of convex analysis we use, with a focus on building intuition. With respect to algorithms for OCO, we first present and analyze the Adaptive Follow the Regularized Leader (AdaFTRL) together with an analysis which relies mainly on the duality between strongly convex and strongly smooth functions. We then describe the Adaptive Online Mirror Descent (AdaOMD) and the Adaptive Dual Averaging (AdaDA) algorithms and analyze both by writing them as special cases of the AdaFTRL algorithm. Additionally, we show simple sufficient conditions for Eager and Lazy Online Mirror Descent (the non-adaptive counter-parts of AdaOMD and AdaDA) to be equivalent. We also present the well-known AdaGrad and Online Newton Step algorithms as special cases of the AdaReg algorithm, proposed by Gupta, Koren, and Singer, which is itself a special case of the AdaOMD algorithm. We conclude by taking a bird\'s-eyes view of the connections shown throughout the text, forming a ``genealogy\'\' of OCO algorithms, and discuss some possible path for future research. |
id |
USP_39687137728fd9251db10604cf8a3cbc |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05062019-165924 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Online convex optimization: algorithms, learning, and dualityOtimização convexa online: algoritmos, aprendizado, e dualidadeAlgorithmsAlgoritmosConvexConvex OptimizationConvexaDualidadeDualityLearningOnlineOnline convex optimizationOtimizaçãoOtimização convexaOtimização convexa onlineOnline Convex Optimization (OCO) is a field in the intersection of game theory, optimization, and machine learning which has been receiving increasing attention due to its recent applications to a wide range of topics such as complexity theory and graph sparsification. Besides the usually simple description and implementation of OCO algorithms, a lot of this recent success is due to a deepening of our understanding of the OCO setting and their algorithms by using cornerstone ideas from convex analysis and optimization such as the powerful results from convex duality theory. In this text we present a mostly self-contained introduction to the field of online convex optimization. We first describe the online learning and online convex optimization settings, proposing an alternative way to formalize both of them so we can make formal claims in a clear and unambiguous fashion while not cluttering the readers understanding. We then present an overview of the main concepts of convex analysis we use, with a focus on building intuition. With respect to algorithms for OCO, we first present and analyze the Adaptive Follow the Regularized Leader (AdaFTRL) together with an analysis which relies mainly on the duality between strongly convex and strongly smooth functions. We then describe the Adaptive Online Mirror Descent (AdaOMD) and the Adaptive Dual Averaging (AdaDA) algorithms and analyze both by writing them as special cases of the AdaFTRL algorithm. Additionally, we show simple sufficient conditions for Eager and Lazy Online Mirror Descent (the non-adaptive counter-parts of AdaOMD and AdaDA) to be equivalent. We also present the well-known AdaGrad and Online Newton Step algorithms as special cases of the AdaReg algorithm, proposed by Gupta, Koren, and Singer, which is itself a special case of the AdaOMD algorithm. We conclude by taking a bird\'s-eyes view of the connections shown throughout the text, forming a ``genealogy\'\' of OCO algorithms, and discuss some possible path for future research.Otimização Convexa Online (OCO) é uma área na intersecção de teoria dos jogos, otimização e aprendizado de máquina que tem recebido maior atenção recentemente devido a suas recentes aplicações em uma grande gama de áreas como complexidade computacional e esparsificação de grafos. Além dos algoritmos de OCO usualmente terem descrições diretas e poderem ser implementados de forma relativamente simples, muito do recente sucesso da área foi possível graças a um melhor entendimento do cenário e dos algoritmos de OCO que se deu com uso de conhecidas ideias de análise e otimização convexa como a poderosa teoria de dualidade convexa. Nesse texto nós apresentamos uma introdução (em sua maioria auto-contida) à área de otimização convexa online. Primeiro, descrevemos os cenários de aprendizado online e de otimização convexa online, propondo uma forma alternativa de formalizar ambos os modelos de forma que conseguimos enunciar afirmações claras e formais de forma que não atrapalha o entendimento do leitor. Nós então apresentamos um resumo dos principais conceitos e resultados de análise convexa que usamos no texto com um foco em criar intuição sobre os mesmos. Com relação a algoritmos para OCO, nós começamos apresentando o algoritmo Adaptive Follow the Regularized Leader (AdaFTRL) e analisamos sua eficácia com um resultado sobre a dualidade de funções strongly convex e strongly smooth. Na sequência, descrevemos os algoritmos Adaptive Online Mirror Descent (AdaOMD) e Adaptive Dual Averaging (AdaDA), analisando a eficácia de cada um escrevendo eles como instâncias do algoritmo AdaFTRL. Além disso, nós mostramos condições simples para que as versões Eager e Lazy do Online Mirror Descent (que são as versões não adaptativas do AdaOMD e do AdaDA, respectivamente) sejam equivalentes. Também apresentamos os algoritmos AdaGrad e Online Newton Step, bem conhecidos na literatura sobre OCO, como casos especiais do algoritmo AdaReg, esse último um algoritmo proposto por Gupta, Koren, and Singer, que, por sua vez, é um caso especial do algoritmo AdaOMD. Nós concluímos o texto com uma visão global das conexões entre os algoritmos que mostramos durante o texto, formando uma \"genealogia\" de algoritmos para OCO, além de discutirmos possíveis direções futuras de pesquisa.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marcel Kenji de CarliPortella, Victor Sanches2019-05-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062019-165924/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T20:39:05Zoai:teses.usp.br:tde-05062019-165924Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T20:39:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Online convex optimization: algorithms, learning, and duality Otimização convexa online: algoritmos, aprendizado, e dualidade |
title |
Online convex optimization: algorithms, learning, and duality |
spellingShingle |
Online convex optimization: algorithms, learning, and duality Portella, Victor Sanches Algorithms Algoritmos Convex Convex Optimization Convexa Dualidade Duality Learning Online Online convex optimization Otimização Otimização convexa Otimização convexa online |
title_short |
Online convex optimization: algorithms, learning, and duality |
title_full |
Online convex optimization: algorithms, learning, and duality |
title_fullStr |
Online convex optimization: algorithms, learning, and duality |
title_full_unstemmed |
Online convex optimization: algorithms, learning, and duality |
title_sort |
Online convex optimization: algorithms, learning, and duality |
author |
Portella, Victor Sanches |
author_facet |
Portella, Victor Sanches |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Marcel Kenji de Carli |
dc.contributor.author.fl_str_mv |
Portella, Victor Sanches |
dc.subject.por.fl_str_mv |
Algorithms Algoritmos Convex Convex Optimization Convexa Dualidade Duality Learning Online Online convex optimization Otimização Otimização convexa Otimização convexa online |
topic |
Algorithms Algoritmos Convex Convex Optimization Convexa Dualidade Duality Learning Online Online convex optimization Otimização Otimização convexa Otimização convexa online |
description |
Online Convex Optimization (OCO) is a field in the intersection of game theory, optimization, and machine learning which has been receiving increasing attention due to its recent applications to a wide range of topics such as complexity theory and graph sparsification. Besides the usually simple description and implementation of OCO algorithms, a lot of this recent success is due to a deepening of our understanding of the OCO setting and their algorithms by using cornerstone ideas from convex analysis and optimization such as the powerful results from convex duality theory. In this text we present a mostly self-contained introduction to the field of online convex optimization. We first describe the online learning and online convex optimization settings, proposing an alternative way to formalize both of them so we can make formal claims in a clear and unambiguous fashion while not cluttering the readers understanding. We then present an overview of the main concepts of convex analysis we use, with a focus on building intuition. With respect to algorithms for OCO, we first present and analyze the Adaptive Follow the Regularized Leader (AdaFTRL) together with an analysis which relies mainly on the duality between strongly convex and strongly smooth functions. We then describe the Adaptive Online Mirror Descent (AdaOMD) and the Adaptive Dual Averaging (AdaDA) algorithms and analyze both by writing them as special cases of the AdaFTRL algorithm. Additionally, we show simple sufficient conditions for Eager and Lazy Online Mirror Descent (the non-adaptive counter-parts of AdaOMD and AdaDA) to be equivalent. We also present the well-known AdaGrad and Online Newton Step algorithms as special cases of the AdaReg algorithm, proposed by Gupta, Koren, and Singer, which is itself a special case of the AdaOMD algorithm. We conclude by taking a bird\'s-eyes view of the connections shown throughout the text, forming a ``genealogy\'\' of OCO algorithms, and discuss some possible path for future research. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062019-165924/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-05062019-165924/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090408776466432 |