Lambert-F Univariate Distributions for Asymmetrical Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-03032022-141531/ |
Resumo: | In this dissertation, we propose new univariate continuous distributions for modeling asymmetri- cal data. Initially, starting from a non-linear parametric transformation of an uniform random variable, we propose a new asymmetric one-parameter distribution that extends the uniform distribution, the so-called Lambert-uniform distribution. The transformation is expressed an- alytically in terms of the principal branch of the Lambert W function in such a way that the inverse transformation is expressed in terms of an exponential function. Consequently, the density function of the Lambert-uniform distribution has a simple closed form and exhibits increasing or decreasing monotonic behavior. Subsequently, based on the Lambert-uniform distribution, we propose a new distribution generator that allows adding one shape parameter to an arbitrary baseline distribution. The added parameter allows a variety of shapes for the density function of the resulting distribution, leading to an expansion of the skewness and kurtosis ranges of the baseline distribution. We observe that the parameter induced by the generator acts as a skewness parameter when the baseline distribution is symmetric. On the other hand, when the baseline distribution has positive support, we observe that the hazard rate function of the resulting distribution corresponds to a modification in the early times of the hazard rate function of the baseline distribution. This is exemplified through the study of four special cases obtained by considering the generalized-bimodal, slash, exponential and Rayleigh distributions as baseline distributions. We discuss the parameter estimation via the maximum likelihood method and evaluate the behavior of the estimators through simulation experiments. Finally, we consider some application examples that illustrate the usefulness of the proposed distributions in different real settings. |
id |
USP_398d83b421632427d903411275f55970 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03032022-141531 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Lambert-F Univariate Distributions for Asymmetrical DataDistribuições Univariadas de Lambert-F para Dados AssimétricosBaseline distributionDistribuição de referênciaDistribution generatorEstimador de máxima verossimilhançaFunção de taxa de riscoFunção densidade de probabilidadeFunção Lambert WGerador de distribuiçãoHazard rate functionLambert W functionMaximum likelihood estimatorParâmetro de formaProbability density functionShape parameterIn this dissertation, we propose new univariate continuous distributions for modeling asymmetri- cal data. Initially, starting from a non-linear parametric transformation of an uniform random variable, we propose a new asymmetric one-parameter distribution that extends the uniform distribution, the so-called Lambert-uniform distribution. The transformation is expressed an- alytically in terms of the principal branch of the Lambert W function in such a way that the inverse transformation is expressed in terms of an exponential function. Consequently, the density function of the Lambert-uniform distribution has a simple closed form and exhibits increasing or decreasing monotonic behavior. Subsequently, based on the Lambert-uniform distribution, we propose a new distribution generator that allows adding one shape parameter to an arbitrary baseline distribution. The added parameter allows a variety of shapes for the density function of the resulting distribution, leading to an expansion of the skewness and kurtosis ranges of the baseline distribution. We observe that the parameter induced by the generator acts as a skewness parameter when the baseline distribution is symmetric. On the other hand, when the baseline distribution has positive support, we observe that the hazard rate function of the resulting distribution corresponds to a modification in the early times of the hazard rate function of the baseline distribution. This is exemplified through the study of four special cases obtained by considering the generalized-bimodal, slash, exponential and Rayleigh distributions as baseline distributions. We discuss the parameter estimation via the maximum likelihood method and evaluate the behavior of the estimators through simulation experiments. Finally, we consider some application examples that illustrate the usefulness of the proposed distributions in different real settings.Nesta tese, propomos novas distribuições contínuas univariadas para modelar dados assimétricos. Inicialmente, partindo de uma transformação paramétrica não linear de uma variável aleatória uni- forme, propomos uma nova distribuição assimétrica de um parâmetro que estende a distribuição uniforme, a chamada distribuição Lambert-uniforme. A transformação é expressa analiticamente em termos do ramo principal da função Lambert W de tal forma que a transformação inversa é expressa em termos de uma função exponencial. Conseqüentemente, a função densidade da distribuição Lambert-uniforme tem uma forma fechada simples e exibe um comportamento monótono crescente ou decrescente. Posteriormente, com base na distribuição Lambert-uniforme, propomos um novo gerador de distribuição que permite adicionar um parâmetro de forma a uma distribuição de referência arbitrária. O parâmetro adicionado permite uma variedade de formas para a função de densidade da distribuição resultante, levando a uma expansão dos intervalos de assimetria e curtose da distribuição de referência. Observamos que o parâmetro induzido pelo gerador atua como parâmetro de assimetria quando a distribuição de referência é simétrica. Por outro lado, quando a distribuição de referência tem suporte positivo, observamos que a função taxa de risco da distribuição resultante corresponde a uma modificação nos tempos iniciais da função taxa de risco da distribuição de referência. Isso é exemplificado através do estudo de quatro casos especiais obtidos considerando as distribuições bimodal generalizada, slash, exponencial e Rayleigh como distribuições de referência. Discutimos a estimação de parâmetros pelo método de máxima verossimilhança e avaliamos o comportamento dos estimadores por meio de experimentos de simulação. Finalmente, consideramos alguns exemplos de aplicação que ilustram a utilidade das distribuições propostas em diferentes ambientes reais.Biblioteca Digitais de Teses e Dissertações da USPAndrade Filho, Mário de CastroSalinas, Yuri Antonio Iriarte2021-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-03032022-141531/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-03-03T17:24:02Zoai:teses.usp.br:tde-03032022-141531Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-03-03T17:24:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Lambert-F Univariate Distributions for Asymmetrical Data Distribuições Univariadas de Lambert-F para Dados Assimétricos |
title |
Lambert-F Univariate Distributions for Asymmetrical Data |
spellingShingle |
Lambert-F Univariate Distributions for Asymmetrical Data Salinas, Yuri Antonio Iriarte Baseline distribution Distribuição de referência Distribution generator Estimador de máxima verossimilhança Função de taxa de risco Função densidade de probabilidade Função Lambert W Gerador de distribuição Hazard rate function Lambert W function Maximum likelihood estimator Parâmetro de forma Probability density function Shape parameter |
title_short |
Lambert-F Univariate Distributions for Asymmetrical Data |
title_full |
Lambert-F Univariate Distributions for Asymmetrical Data |
title_fullStr |
Lambert-F Univariate Distributions for Asymmetrical Data |
title_full_unstemmed |
Lambert-F Univariate Distributions for Asymmetrical Data |
title_sort |
Lambert-F Univariate Distributions for Asymmetrical Data |
author |
Salinas, Yuri Antonio Iriarte |
author_facet |
Salinas, Yuri Antonio Iriarte |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade Filho, Mário de Castro |
dc.contributor.author.fl_str_mv |
Salinas, Yuri Antonio Iriarte |
dc.subject.por.fl_str_mv |
Baseline distribution Distribuição de referência Distribution generator Estimador de máxima verossimilhança Função de taxa de risco Função densidade de probabilidade Função Lambert W Gerador de distribuição Hazard rate function Lambert W function Maximum likelihood estimator Parâmetro de forma Probability density function Shape parameter |
topic |
Baseline distribution Distribuição de referência Distribution generator Estimador de máxima verossimilhança Função de taxa de risco Função densidade de probabilidade Função Lambert W Gerador de distribuição Hazard rate function Lambert W function Maximum likelihood estimator Parâmetro de forma Probability density function Shape parameter |
description |
In this dissertation, we propose new univariate continuous distributions for modeling asymmetri- cal data. Initially, starting from a non-linear parametric transformation of an uniform random variable, we propose a new asymmetric one-parameter distribution that extends the uniform distribution, the so-called Lambert-uniform distribution. The transformation is expressed an- alytically in terms of the principal branch of the Lambert W function in such a way that the inverse transformation is expressed in terms of an exponential function. Consequently, the density function of the Lambert-uniform distribution has a simple closed form and exhibits increasing or decreasing monotonic behavior. Subsequently, based on the Lambert-uniform distribution, we propose a new distribution generator that allows adding one shape parameter to an arbitrary baseline distribution. The added parameter allows a variety of shapes for the density function of the resulting distribution, leading to an expansion of the skewness and kurtosis ranges of the baseline distribution. We observe that the parameter induced by the generator acts as a skewness parameter when the baseline distribution is symmetric. On the other hand, when the baseline distribution has positive support, we observe that the hazard rate function of the resulting distribution corresponds to a modification in the early times of the hazard rate function of the baseline distribution. This is exemplified through the study of four special cases obtained by considering the generalized-bimodal, slash, exponential and Rayleigh distributions as baseline distributions. We discuss the parameter estimation via the maximum likelihood method and evaluate the behavior of the estimators through simulation experiments. Finally, we consider some application examples that illustrate the usefulness of the proposed distributions in different real settings. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-03032022-141531/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-03032022-141531/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256631284334592 |