Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/44/44143/tde-01122020-100829/ |
Resumo: | In the southern portion of Socorro Guaxupé Nappe, interpreted as a magmatic arc developed during west Gondwana assembly in the Brasiliano-Pan-African Orogeny, Nazaré Paulista region is characterized by the occurrence of complex outcrops of migmatites and anatectic granites. The anatectic granites present two main types: a veined garnet-biotite granite (gray granite); and garnet leucogranites, that occur both as independent bodies, and as veins, forming complex networks cutting the gray granite. Field evidence points to an apparent crystallization gap between granite varieties, which we investigate in this dissertation, applying zircon and monazite geochronology (by SHRIMP and LA-ICP-MS, respectively). We also investigate the genesis of the leucogranites, using trace-element signatures of zircon and garnet. Obtained SHRIMP zircon ages for host gray granite and leucogranite veins are equivalent, within error - 626 ± 8 and 618 ± 8 Ma, respectively. These ages record near peak and part of the retrograde evolution of the region. Monazite LA-ICP-MS dating confirms the crystallization age gap between the granite varieties: the monazite from gray granite crystallized at ca. 621 ± 2 Ma, while monazite from leucogranites crystallized, probably in episodic pulses, between 610 - 600 Ma. Zircon inheritance sets in the migmatite vary from 1100 to 2450 Ma. Some inherited monazite cores from migmatite also yielded ages of ca. 770 - 790 Ma, coeval to very low Th/U zircon rims. Combined monazite and zircon geochronological data suggests a protracted thermal last event, recording part of the prograde and mostly the retrograde path of the region, during a time span longer than 30 Ma. Detrital zircon from the metatexite suggest a maximum deposition age of at least 1100 Ma, and a chemical signature of granitoid sources. The inherited zircon and monazite suggest a metamorphic event at ca. 790 Ma, rarely reported to Socorro Guaxupé Nappe, but coeval to the metamorphism registered by rocks in the Apiaí-Embu Terrane (Mantiqueira Orogenic System). Modelling bulk rock contents from zircon compositions, in late zircon phases, occurring as overgrowths, produce bulk rock compositions compatible empirical data, suggesting these phases were in equilibrium and no hydrothermal event modified these grains. Ti in zircon thermometry and zircon/garnet modelling suggest evolution in an open system for these rocks. We calculated \'D POT. zircon/garnet IND. REE\' and applied the method proposed by Taylor et al. (2017). Zircon cores are close equilibrium with (what is interpreted as) restitic garnet and overgrowths are usually in equilibrium with late, peritectic garnet generation. However, for some varieties of leucogranite, zircon and garnet are never found to be in equilibrium. No coherence between Lu-Hf isotopy is found between the vein leucogranite and the gray granite, so, if the gray granite is a source for the veins, another source is necessary to account for isotopic variation. The garnet leucogranite present trends compatible with fractioned crystallization, while the fibrolite bearing leucogranite probably formed in an open system. Nazaré Paulista evolution is much more complex than previously thought: a primary anatexis event, after metamorphic peak, at around 630 - 625 Ma originated the gray granite; a second anatexis event, probably involving water-flux melting of the gray granite, during decompression, generated the leucogranites, which crystallized at 610 - 600 Ma. |
id |
USP_39a7f58f93943ad52addf52cff3508bc |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01122020-100829 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé NappePetrocronologia das rochas anatéticas de Nazaré Paulista (SP), porção sul da Nappe Socorro GuaxupéElementos traçoETRGeochronologyGeocronologiaGraniteGranitoMigmatiteMigmatitoMonazitaMonazitePetrochronologyPetrocronologiaREETrace elementsZircãoZirconIn the southern portion of Socorro Guaxupé Nappe, interpreted as a magmatic arc developed during west Gondwana assembly in the Brasiliano-Pan-African Orogeny, Nazaré Paulista region is characterized by the occurrence of complex outcrops of migmatites and anatectic granites. The anatectic granites present two main types: a veined garnet-biotite granite (gray granite); and garnet leucogranites, that occur both as independent bodies, and as veins, forming complex networks cutting the gray granite. Field evidence points to an apparent crystallization gap between granite varieties, which we investigate in this dissertation, applying zircon and monazite geochronology (by SHRIMP and LA-ICP-MS, respectively). We also investigate the genesis of the leucogranites, using trace-element signatures of zircon and garnet. Obtained SHRIMP zircon ages for host gray granite and leucogranite veins are equivalent, within error - 626 ± 8 and 618 ± 8 Ma, respectively. These ages record near peak and part of the retrograde evolution of the region. Monazite LA-ICP-MS dating confirms the crystallization age gap between the granite varieties: the monazite from gray granite crystallized at ca. 621 ± 2 Ma, while monazite from leucogranites crystallized, probably in episodic pulses, between 610 - 600 Ma. Zircon inheritance sets in the migmatite vary from 1100 to 2450 Ma. Some inherited monazite cores from migmatite also yielded ages of ca. 770 - 790 Ma, coeval to very low Th/U zircon rims. Combined monazite and zircon geochronological data suggests a protracted thermal last event, recording part of the prograde and mostly the retrograde path of the region, during a time span longer than 30 Ma. Detrital zircon from the metatexite suggest a maximum deposition age of at least 1100 Ma, and a chemical signature of granitoid sources. The inherited zircon and monazite suggest a metamorphic event at ca. 790 Ma, rarely reported to Socorro Guaxupé Nappe, but coeval to the metamorphism registered by rocks in the Apiaí-Embu Terrane (Mantiqueira Orogenic System). Modelling bulk rock contents from zircon compositions, in late zircon phases, occurring as overgrowths, produce bulk rock compositions compatible empirical data, suggesting these phases were in equilibrium and no hydrothermal event modified these grains. Ti in zircon thermometry and zircon/garnet modelling suggest evolution in an open system for these rocks. We calculated \'D POT. zircon/garnet IND. REE\' and applied the method proposed by Taylor et al. (2017). Zircon cores are close equilibrium with (what is interpreted as) restitic garnet and overgrowths are usually in equilibrium with late, peritectic garnet generation. However, for some varieties of leucogranite, zircon and garnet are never found to be in equilibrium. No coherence between Lu-Hf isotopy is found between the vein leucogranite and the gray granite, so, if the gray granite is a source for the veins, another source is necessary to account for isotopic variation. The garnet leucogranite present trends compatible with fractioned crystallization, while the fibrolite bearing leucogranite probably formed in an open system. Nazaré Paulista evolution is much more complex than previously thought: a primary anatexis event, after metamorphic peak, at around 630 - 625 Ma originated the gray granite; a second anatexis event, probably involving water-flux melting of the gray granite, during decompression, generated the leucogranites, which crystallized at 610 - 600 Ma.Na porção sul da Nappe Socorro Guaxupé, interpretada como um arco magmático desenvolvido durante a amalgamação do Gondwana ocidental na orogenia Brasiliana Pan-africana, a região de Nazaré Pauslita é caracterizada pela ocorrência de afloramentos complexos de migmatitos e granitos anatéticos. Os granitos anatéticos ocorrem em duas variedades principais: granada-biotita granito cinza venulado (granito cinza) e granada leucogranito, que ocorrem como corpos isolados e como vênulas, em redes complexas cortando o granito cinza. Evidências em campo apontam para um possível gap de idade entre as variedades de granito, o qual investigamos nessa dissertação, usando geocronologia de zircão e monazita (por SHRIMP e LA-ICP-MS, respectivamente). A gênese dos leucogranitos também é investigada, usando química de elementos traço no zircão. As idades obtidas por SHRIMP para o granito cinza e vênula são equivalentes, dentro do erro - 626 ± 8 and 618 ± 8 Ma, respectivamente. Essas idades marcam aproximadamente o pico metamórfico e parte da evolução retrógrada da região. Idades de monazita confirma o gap entre idades de cristalização dos granitos: o granito cinza a ca. 621 ± 2 Ma, e leucogranitos, provavelmente em pulsos episódicos, entre 610 - 600 Ma. Conjuntos de zircão detrítico no migmatito variam entre 1100 e 2450Ma, indicando idade máxima de deposicão de 1100Ma para o protólito metasedimentar. Núcleos herdados de monazita registram idade de ca. 770 - 790 Ma, coincidentes com bordas de zircão com baixa razão Th/U. Os dados geocronológicos de zircão e monazita sugerem envento termal prolongado, registrando parte do evento progressivo, mas principalmente a trajetória retrógrada da região, num intervalo de aproximadamente 30 Ma. As idades herdadas de monazite, aliadas às bordas de zircão marcam um evento metamórfico em ca. 790 Ma, raramente reportado para a Nappe Socorro Guaxupé, mas coincidente com o metamorfismo do Complexo Apiaí-Embu (Sistema Orogênico Mantiqueira). Simulando composições de rocha parental a partir das composições de zircão tardio (sobrecrescimentos), observa-se que as composições modeladas são semelhantes àquelas analisadas na rocha, sugerindo equilíbrio entre as fases, e portanto, exclui-se a possibilidade de que hidrotermalismo teria modificado a composição dos grãos. Termometria de Ti em zircão e modelamento de granada e zircão sugerem evolução em sistema aberto para as rochas de Nazaré Paulista. Calculamos\'D D POT. zircon/garnet IND. REE\' e aplicamos o método proposto por Taylor et al. (2017). Núcleos de zircão estão em equilíbrio com granada interpretada como restito, enquanto sobrecrescimentos sçao compatíveis com granada peritética. Entretanto, para algumas variedades de leucogranito, zircão e granada não atingiram equilíbrio. Não se observa coerência no sistema isotópico Lu-Hf entre granito cinza e vênula, então, se o granito cinza é uma fonte para as vênulas, a participação de outra fonte é necessária para justificar a variação isotópica. O granada leucogranito apresenta evolução compatível com cristalização fracionada, enquanto o leucogranito com fibrolita provavelmente foi formado num sistema aberto. A evolução das rochas de Nazaré Paulista é mais complexa do que suposta previamente: um evento de anatexia ocorreu após o pico metamórfico, em ca. 630 - 625 Ma, originando o granito cinza; um segundo evento anatético, provavelmente envolvendo fusão por influxo de água do granito cinza, durante a descompressão, teria gerado, em pulsos, os leucogranitos, que se cristalizam entre 610 - 600 Ma.Biblioteca Digitais de Teses e Dissertações da USPMartins, LuceleneVirmond, Adrianna Luiza2019-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/44/44143/tde-01122020-100829/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-08T13:00:03Zoai:teses.usp.br:tde-01122020-100829Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-08T13:00:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe Petrocronologia das rochas anatéticas de Nazaré Paulista (SP), porção sul da Nappe Socorro Guaxupé |
title |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe |
spellingShingle |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe Virmond, Adrianna Luiza Elementos traço ETR Geochronology Geocronologia Granite Granito Migmatite Migmatito Monazita Monazite Petrochronology Petrocronologia REE Trace elements Zircão Zircon |
title_short |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe |
title_full |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe |
title_fullStr |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe |
title_full_unstemmed |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe |
title_sort |
Petrochronology of anatectic rocks from Nazaré Paulista (SP), southern Socorro Guaxupé Nappe |
author |
Virmond, Adrianna Luiza |
author_facet |
Virmond, Adrianna Luiza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Martins, Lucelene |
dc.contributor.author.fl_str_mv |
Virmond, Adrianna Luiza |
dc.subject.por.fl_str_mv |
Elementos traço ETR Geochronology Geocronologia Granite Granito Migmatite Migmatito Monazita Monazite Petrochronology Petrocronologia REE Trace elements Zircão Zircon |
topic |
Elementos traço ETR Geochronology Geocronologia Granite Granito Migmatite Migmatito Monazita Monazite Petrochronology Petrocronologia REE Trace elements Zircão Zircon |
description |
In the southern portion of Socorro Guaxupé Nappe, interpreted as a magmatic arc developed during west Gondwana assembly in the Brasiliano-Pan-African Orogeny, Nazaré Paulista region is characterized by the occurrence of complex outcrops of migmatites and anatectic granites. The anatectic granites present two main types: a veined garnet-biotite granite (gray granite); and garnet leucogranites, that occur both as independent bodies, and as veins, forming complex networks cutting the gray granite. Field evidence points to an apparent crystallization gap between granite varieties, which we investigate in this dissertation, applying zircon and monazite geochronology (by SHRIMP and LA-ICP-MS, respectively). We also investigate the genesis of the leucogranites, using trace-element signatures of zircon and garnet. Obtained SHRIMP zircon ages for host gray granite and leucogranite veins are equivalent, within error - 626 ± 8 and 618 ± 8 Ma, respectively. These ages record near peak and part of the retrograde evolution of the region. Monazite LA-ICP-MS dating confirms the crystallization age gap between the granite varieties: the monazite from gray granite crystallized at ca. 621 ± 2 Ma, while monazite from leucogranites crystallized, probably in episodic pulses, between 610 - 600 Ma. Zircon inheritance sets in the migmatite vary from 1100 to 2450 Ma. Some inherited monazite cores from migmatite also yielded ages of ca. 770 - 790 Ma, coeval to very low Th/U zircon rims. Combined monazite and zircon geochronological data suggests a protracted thermal last event, recording part of the prograde and mostly the retrograde path of the region, during a time span longer than 30 Ma. Detrital zircon from the metatexite suggest a maximum deposition age of at least 1100 Ma, and a chemical signature of granitoid sources. The inherited zircon and monazite suggest a metamorphic event at ca. 790 Ma, rarely reported to Socorro Guaxupé Nappe, but coeval to the metamorphism registered by rocks in the Apiaí-Embu Terrane (Mantiqueira Orogenic System). Modelling bulk rock contents from zircon compositions, in late zircon phases, occurring as overgrowths, produce bulk rock compositions compatible empirical data, suggesting these phases were in equilibrium and no hydrothermal event modified these grains. Ti in zircon thermometry and zircon/garnet modelling suggest evolution in an open system for these rocks. We calculated \'D POT. zircon/garnet IND. REE\' and applied the method proposed by Taylor et al. (2017). Zircon cores are close equilibrium with (what is interpreted as) restitic garnet and overgrowths are usually in equilibrium with late, peritectic garnet generation. However, for some varieties of leucogranite, zircon and garnet are never found to be in equilibrium. No coherence between Lu-Hf isotopy is found between the vein leucogranite and the gray granite, so, if the gray granite is a source for the veins, another source is necessary to account for isotopic variation. The garnet leucogranite present trends compatible with fractioned crystallization, while the fibrolite bearing leucogranite probably formed in an open system. Nazaré Paulista evolution is much more complex than previously thought: a primary anatexis event, after metamorphic peak, at around 630 - 625 Ma originated the gray granite; a second anatexis event, probably involving water-flux melting of the gray granite, during decompression, generated the leucogranites, which crystallized at 610 - 600 Ma. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/44/44143/tde-01122020-100829/ |
url |
https://www.teses.usp.br/teses/disponiveis/44/44143/tde-01122020-100829/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256594864144384 |