Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas

Detalhes bibliográficos
Autor(a) principal: Ticona, Waldo Gonzalo Cancino
Data de Publicação: 2008
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02042008-142554/
Resumo: O problema reconstrução filogenética têm como objetivo determinar as relações evolutivas das espécies, usualmente representadas em estruturas de árvores. No entanto, esse problema tem se mostrado muito difícil uma vez que o espaço de busca das possíveis árvores é muito grande. Diversos métodos de reconstrução filogenética têm sido propostos. Vários desses métodos definem um critério de otimalidade para avaliar as possíveis soluções do problema. Porém, a aplicação de diferentes critérios resulta em árvores diferentes, inconsistentes entre sim. Nesse contexto, uma abordagem multi-objetivo para a reconstrução filogenética pode ser útil produzindo um conjunto de árvores consideradas adequadas por mais de um critério. Nesta tese é proposto um algoritmo evolutivo multi-objetivo, denominado PhyloMOEA, para o problema de reconstrução filogenética. O PhyloMOEA emprega os critérios de parcimônia e verossimilhança que são dois dos métodos de reconstru ção filogenética mais empregados. Nos experimentos, o PhyloMOEA foi testado utilizando quatro bancos de seqüências freqüentemente empregados na literatura. Para cada banco de teste, o PhyloMOEA encontrou as soluções da fronteira de Pareto que representam um compromisso entre os critérios considerados. As árvores da fronteira de Pareto foram validadas estatisticamente utilizando o teste SH. Os resultados mostraram que o PhyloMOEA encontrou um número de soluções intermediárias que são consistentes com as soluções obtidas por análises de máxima parcimônia e máxima verossimilhança realizados separadamente. Além disso, os graus de suporte dos clados pertencentes às árvores encontradas pelo PhyloMOEA foram comparadas com a probabilidade posterior dos clados calculados pelo programa Mr.Bayes aplicados aos quatro bancos de teste. Os resultados indicaram que há uma relação entre ambos os valores para vários grupos de clados. Em resumo, o PhyloMOEA é capaz de encontrar uma diversidade de soluções intermediárias que são estatisticamente tão boas quanto as melhores soluções de máxima parcimônia e máxima verossimilhança. Tais soluções apresentam um compromisso entre os dois objetivos
id USP_3a4d30c0b0018b926d62e3cb2737a5e8
oai_identifier_str oai:teses.usp.br:tde-02042008-142554
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticasEvolutionary multi-objective algorithms for Phylogenetic InferenceAlgoritmos evolutivosEvolutionary algorithmsFilogeniaMulti-objective optimizationOtimização multi-objetivoPhylogenyO problema reconstrução filogenética têm como objetivo determinar as relações evolutivas das espécies, usualmente representadas em estruturas de árvores. No entanto, esse problema tem se mostrado muito difícil uma vez que o espaço de busca das possíveis árvores é muito grande. Diversos métodos de reconstrução filogenética têm sido propostos. Vários desses métodos definem um critério de otimalidade para avaliar as possíveis soluções do problema. Porém, a aplicação de diferentes critérios resulta em árvores diferentes, inconsistentes entre sim. Nesse contexto, uma abordagem multi-objetivo para a reconstrução filogenética pode ser útil produzindo um conjunto de árvores consideradas adequadas por mais de um critério. Nesta tese é proposto um algoritmo evolutivo multi-objetivo, denominado PhyloMOEA, para o problema de reconstrução filogenética. O PhyloMOEA emprega os critérios de parcimônia e verossimilhança que são dois dos métodos de reconstru ção filogenética mais empregados. Nos experimentos, o PhyloMOEA foi testado utilizando quatro bancos de seqüências freqüentemente empregados na literatura. Para cada banco de teste, o PhyloMOEA encontrou as soluções da fronteira de Pareto que representam um compromisso entre os critérios considerados. As árvores da fronteira de Pareto foram validadas estatisticamente utilizando o teste SH. Os resultados mostraram que o PhyloMOEA encontrou um número de soluções intermediárias que são consistentes com as soluções obtidas por análises de máxima parcimônia e máxima verossimilhança realizados separadamente. Além disso, os graus de suporte dos clados pertencentes às árvores encontradas pelo PhyloMOEA foram comparadas com a probabilidade posterior dos clados calculados pelo programa Mr.Bayes aplicados aos quatro bancos de teste. Os resultados indicaram que há uma relação entre ambos os valores para vários grupos de clados. Em resumo, o PhyloMOEA é capaz de encontrar uma diversidade de soluções intermediárias que são estatisticamente tão boas quanto as melhores soluções de máxima parcimônia e máxima verossimilhança. Tais soluções apresentam um compromisso entre os dois objetivosThe phylogeny reconstruction problem consists of determining the evolutionary relationships (usually represented as a tree) among species. This is a very complex problem since the tree search space is huge. Several phylogenetic reconstruction methods have been proposed. Many of them defines an optimality criterion for evaluation of possible solutions. However, different criteria may lead to distinct phylogenies, which often conflict with each other. In this context, a multi-objective approach for phylogeny reconstruction can be useful since it could produce a set of optimal trees according to mdifficultultiple criteria. In this thesis, a multi-objective evolutionary algorithm for phylogenetic reconstruction, called PhyloMOEA, is proposed. PhyloMOEA uses the parsimony and likelihood criteria, which are two of the most used phylogenetic reconstruction methods. PhyloMOEA was tested using four datasets of nucleotide sequences found in the literature. For each dataset, the proposed algorithm found a Pareto front representing a trade-off between the used criteria. Trees in the Pareto front were statistically validated using the SH-test, which has shown that a number of intermediate solutions from PhyloMOEA are consistent with solutions found by phylogenetic methods using one criterion. Moreover, clade support values from trees found by PhyloMOEA was compared to clade posterior probabilities obtained by Mr.Bayes. Results indicate a correlation between these probabilities for several clades. In summary, PhyloMOEA is able to find diverse intermediate solutions, which are not statistically worse than the best solutions for the maximum parsimony and maximum likelihood criteria. Moreover, intermediate solutions represent a trade-off between these criteriaBiblioteca Digitais de Teses e Dissertações da USPDelbem, Alexandre Cláudio BotazzoTicona, Waldo Gonzalo Cancino2008-02-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-02042008-142554/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-02042008-142554Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
Evolutionary multi-objective algorithms for Phylogenetic Inference
title Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
spellingShingle Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
Ticona, Waldo Gonzalo Cancino
Algoritmos evolutivos
Evolutionary algorithms
Filogenia
Multi-objective optimization
Otimização multi-objetivo
Phylogeny
title_short Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
title_full Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
title_fullStr Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
title_full_unstemmed Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
title_sort Algoritmos evolutivos multi-objetivo para a reconstrução de árvores filogenéticas
author Ticona, Waldo Gonzalo Cancino
author_facet Ticona, Waldo Gonzalo Cancino
author_role author
dc.contributor.none.fl_str_mv Delbem, Alexandre Cláudio Botazzo
dc.contributor.author.fl_str_mv Ticona, Waldo Gonzalo Cancino
dc.subject.por.fl_str_mv Algoritmos evolutivos
Evolutionary algorithms
Filogenia
Multi-objective optimization
Otimização multi-objetivo
Phylogeny
topic Algoritmos evolutivos
Evolutionary algorithms
Filogenia
Multi-objective optimization
Otimização multi-objetivo
Phylogeny
description O problema reconstrução filogenética têm como objetivo determinar as relações evolutivas das espécies, usualmente representadas em estruturas de árvores. No entanto, esse problema tem se mostrado muito difícil uma vez que o espaço de busca das possíveis árvores é muito grande. Diversos métodos de reconstrução filogenética têm sido propostos. Vários desses métodos definem um critério de otimalidade para avaliar as possíveis soluções do problema. Porém, a aplicação de diferentes critérios resulta em árvores diferentes, inconsistentes entre sim. Nesse contexto, uma abordagem multi-objetivo para a reconstrução filogenética pode ser útil produzindo um conjunto de árvores consideradas adequadas por mais de um critério. Nesta tese é proposto um algoritmo evolutivo multi-objetivo, denominado PhyloMOEA, para o problema de reconstrução filogenética. O PhyloMOEA emprega os critérios de parcimônia e verossimilhança que são dois dos métodos de reconstru ção filogenética mais empregados. Nos experimentos, o PhyloMOEA foi testado utilizando quatro bancos de seqüências freqüentemente empregados na literatura. Para cada banco de teste, o PhyloMOEA encontrou as soluções da fronteira de Pareto que representam um compromisso entre os critérios considerados. As árvores da fronteira de Pareto foram validadas estatisticamente utilizando o teste SH. Os resultados mostraram que o PhyloMOEA encontrou um número de soluções intermediárias que são consistentes com as soluções obtidas por análises de máxima parcimônia e máxima verossimilhança realizados separadamente. Além disso, os graus de suporte dos clados pertencentes às árvores encontradas pelo PhyloMOEA foram comparadas com a probabilidade posterior dos clados calculados pelo programa Mr.Bayes aplicados aos quatro bancos de teste. Os resultados indicaram que há uma relação entre ambos os valores para vários grupos de clados. Em resumo, o PhyloMOEA é capaz de encontrar uma diversidade de soluções intermediárias que são estatisticamente tão boas quanto as melhores soluções de máxima parcimônia e máxima verossimilhança. Tais soluções apresentam um compromisso entre os dois objetivos
publishDate 2008
dc.date.none.fl_str_mv 2008-02-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02042008-142554/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02042008-142554/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256601921060864