Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.

Detalhes bibliográficos
Autor(a) principal: Nakashima, Rafael Nogueira
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3150/tde-26082022-081436/
Resumo: Biogas is a promising renewable and distributed source of energy derived from the anaerobic treatment of organic residues. Dierent production routes using biogas have been proposed in the literature, such as power and heat cogeneration, biomethane or hydrogen production. However, few studies have evaluated the technical, economic and environmental performance of these production routes in the Brazilian context. In addition, although biogas can provide substantial benets for the environment, its application may be restricted to large industrial facilities due to the lack of ecient conversion systems at small facilities. An interesting technology alternative for biogas conversion is the use of high temperature fuel cells, such as solid oxide fuel cells (SOFC), due to their high eciency and modularity. However, the in uence of operational parameters in the optimization of revenues, eciency and environmental impact has been seldom studied for these novel polygeneration systems. Thus, this thesis aims to develop a systematic framework to design, evaluate and optimize biogas production and conversion systems, with a modern approach to modelling and optimization. The research discuss and compare the technical, economic and environmental performance of dierent biogas conversion routes (electricity, methane and hydrogen) based on the principles of exergoeconomic analysis. Next, dierent designs for fuel cell systems working with biogas to produce electricity and hydrogen optimized for exergy eciency and net present value or electricity costs. The results indicate that hydrogen production using biogas is the most protable production route and its eciency/economic return can be improved by integrating this process with fuel cells. Moreover, the distributed generation of electricity using fuel cells requires further reductions in equipment costs to be economically viable at competitive interest return ratios.
id USP_3b6037ac10dc5c891b90f454f43d0df0
oai_identifier_str oai:teses.usp.br:tde-26082022-081436
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.Modelagem, simulação e optimização de rotas de conversão do biogás integradas com a tecnologia de células a combustível.BiogasBiogásCélula a combustívelExergiaExergyFuel cellHidrogênioHydrogenoptimizationOtimizaçãoBiogas is a promising renewable and distributed source of energy derived from the anaerobic treatment of organic residues. Dierent production routes using biogas have been proposed in the literature, such as power and heat cogeneration, biomethane or hydrogen production. However, few studies have evaluated the technical, economic and environmental performance of these production routes in the Brazilian context. In addition, although biogas can provide substantial benets for the environment, its application may be restricted to large industrial facilities due to the lack of ecient conversion systems at small facilities. An interesting technology alternative for biogas conversion is the use of high temperature fuel cells, such as solid oxide fuel cells (SOFC), due to their high eciency and modularity. However, the in uence of operational parameters in the optimization of revenues, eciency and environmental impact has been seldom studied for these novel polygeneration systems. Thus, this thesis aims to develop a systematic framework to design, evaluate and optimize biogas production and conversion systems, with a modern approach to modelling and optimization. The research discuss and compare the technical, economic and environmental performance of dierent biogas conversion routes (electricity, methane and hydrogen) based on the principles of exergoeconomic analysis. Next, dierent designs for fuel cell systems working with biogas to produce electricity and hydrogen optimized for exergy eciency and net present value or electricity costs. The results indicate that hydrogen production using biogas is the most protable production route and its eciency/economic return can be improved by integrating this process with fuel cells. Moreover, the distributed generation of electricity using fuel cells requires further reductions in equipment costs to be economically viable at competitive interest return ratios.Sem resumo em portuguêsBiblioteca Digitais de Teses e Dissertações da USPOliveira Junior, Silvio deNakashima, Rafael Nogueira2022-02-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3150/tde-26082022-081436/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:03:42Zoai:teses.usp.br:tde-26082022-081436Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:03:42Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
Modelagem, simulação e optimização de rotas de conversão do biogás integradas com a tecnologia de células a combustível.
title Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
spellingShingle Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
Nakashima, Rafael Nogueira
Biogas
Biogás
Célula a combustível
Exergia
Exergy
Fuel cell
Hidrogênio
Hydrogen
optimization
Otimização
title_short Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
title_full Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
title_fullStr Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
title_full_unstemmed Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
title_sort Modelling, simulation and optimization of biogas conversion routes integrated with fuel cell technology.
author Nakashima, Rafael Nogueira
author_facet Nakashima, Rafael Nogueira
author_role author
dc.contributor.none.fl_str_mv Oliveira Junior, Silvio de
dc.contributor.author.fl_str_mv Nakashima, Rafael Nogueira
dc.subject.por.fl_str_mv Biogas
Biogás
Célula a combustível
Exergia
Exergy
Fuel cell
Hidrogênio
Hydrogen
optimization
Otimização
topic Biogas
Biogás
Célula a combustível
Exergia
Exergy
Fuel cell
Hidrogênio
Hydrogen
optimization
Otimização
description Biogas is a promising renewable and distributed source of energy derived from the anaerobic treatment of organic residues. Dierent production routes using biogas have been proposed in the literature, such as power and heat cogeneration, biomethane or hydrogen production. However, few studies have evaluated the technical, economic and environmental performance of these production routes in the Brazilian context. In addition, although biogas can provide substantial benets for the environment, its application may be restricted to large industrial facilities due to the lack of ecient conversion systems at small facilities. An interesting technology alternative for biogas conversion is the use of high temperature fuel cells, such as solid oxide fuel cells (SOFC), due to their high eciency and modularity. However, the in uence of operational parameters in the optimization of revenues, eciency and environmental impact has been seldom studied for these novel polygeneration systems. Thus, this thesis aims to develop a systematic framework to design, evaluate and optimize biogas production and conversion systems, with a modern approach to modelling and optimization. The research discuss and compare the technical, economic and environmental performance of dierent biogas conversion routes (electricity, methane and hydrogen) based on the principles of exergoeconomic analysis. Next, dierent designs for fuel cell systems working with biogas to produce electricity and hydrogen optimized for exergy eciency and net present value or electricity costs. The results indicate that hydrogen production using biogas is the most protable production route and its eciency/economic return can be improved by integrating this process with fuel cells. Moreover, the distributed generation of electricity using fuel cells requires further reductions in equipment costs to be economically viable at competitive interest return ratios.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3150/tde-26082022-081436/
url https://www.teses.usp.br/teses/disponiveis/3/3150/tde-26082022-081436/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256537508085760