Mineração e visualização de coleções de séries temporais

Detalhes bibliográficos
Autor(a) principal: Alencar, Aretha Barbosa
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012008-103928/
Resumo: A análise de séries temporais gera muitos desafios para profisionais em um grande número de domínios. Várias soluções de visualização integrada com algoritmos de mineração já foram propostas para tarefas exploratórias em coleções de séries temporais. À medida que o conjunto de dados cresce, estas soluções falham em promover uma boa associação entre séries temporais similares. Neste trabalho, é apresentada uma ferramenta para a análise exploratória e mineração de conjuntos de séries temporais que adota uma representação visual baseada em medidas de dissimilaridade entre séries. Esta representação é criada usando técnicas rápidas de projeção, de forma que as séries temporais possam ser visualizadas em espaços bidimensionais. Vários tipos de atributos visuais e conexões no grafo resultante podem ser utilizados para suportar a exploração dessa representação. Também é possível aplicar algumas tarefas de mineração de dados, como a classificação, para apoiar a busca por padrões. As visualizações resultantes têm se mostrado muito úteis na identificação de grupos de séries com comportamentos similares, que são mapeadas para a mesma vizinhança no espaço bidimensional. Grupos visuais de elementos, assim como outliers, são facilmente identficáveis. A ferramenta é avaliada por meio de sua aplicação a vários conjuntos de séries. Um dos estudos de caso explora dados de vazões de usinas hidrelétricas no Brasil, uma aplicação estratégica para o planejamento energético.
id USP_3cb33c289606b52fa80a1380dfa0f3c5
oai_identifier_str oai:teses.usp.br:tde-17012008-103928
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Mineração e visualização de coleções de séries temporaisMining and visualization of time series collectionsData miningInformation visualizationMineração de dadosSéries temporaisTime seriesVisualização de informaçãoA análise de séries temporais gera muitos desafios para profisionais em um grande número de domínios. Várias soluções de visualização integrada com algoritmos de mineração já foram propostas para tarefas exploratórias em coleções de séries temporais. À medida que o conjunto de dados cresce, estas soluções falham em promover uma boa associação entre séries temporais similares. Neste trabalho, é apresentada uma ferramenta para a análise exploratória e mineração de conjuntos de séries temporais que adota uma representação visual baseada em medidas de dissimilaridade entre séries. Esta representação é criada usando técnicas rápidas de projeção, de forma que as séries temporais possam ser visualizadas em espaços bidimensionais. Vários tipos de atributos visuais e conexões no grafo resultante podem ser utilizados para suportar a exploração dessa representação. Também é possível aplicar algumas tarefas de mineração de dados, como a classificação, para apoiar a busca por padrões. As visualizações resultantes têm se mostrado muito úteis na identificação de grupos de séries com comportamentos similares, que são mapeadas para a mesma vizinhança no espaço bidimensional. Grupos visuais de elementos, assim como outliers, são facilmente identficáveis. A ferramenta é avaliada por meio de sua aplicação a vários conjuntos de séries. Um dos estudos de caso explora dados de vazões de usinas hidrelétricas no Brasil, uma aplicação estratégica para o planejamento energético.Time series analysis poses many challenges to professionals in a wide range of domains. Several visualization solutions integrated with mining algorithms have been proposed for exploratory tasks on time series collections. As the data sets grow large, though, the visual alternatives do not allow for a good association between similar time series. In this work, we introduce a tool for exploratory visualization and mining of large time series data sets that adopts a visual representation based on distance measures between series. This representation is created employing fast projection techniques, so the time series can be viewed in two-dimensional spaces. Various types of visual attributes and connection on the resulting graph can be applied to support exploration. It also supports data mining tasks, such as classification, to search for patterns. The resulting visualizations have proved very useful for identifying groups of series with similar behavior, which are mapped to the close neighborhoods in twodimensional spaces. Visual clusters of elements, as well as outliers, are easily identifiable. Case studies on several domains are presented to validate the tool. One of them is on a data set of stream ows in hydroelectric power plants in Brazil, a strategic application for energy planning.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Maria Cristina Ferreira deAlencar, Aretha Barbosa2007-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012008-103928/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-17012008-103928Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mineração e visualização de coleções de séries temporais
Mining and visualization of time series collections
title Mineração e visualização de coleções de séries temporais
spellingShingle Mineração e visualização de coleções de séries temporais
Alencar, Aretha Barbosa
Data mining
Information visualization
Mineração de dados
Séries temporais
Time series
Visualização de informação
title_short Mineração e visualização de coleções de séries temporais
title_full Mineração e visualização de coleções de séries temporais
title_fullStr Mineração e visualização de coleções de séries temporais
title_full_unstemmed Mineração e visualização de coleções de séries temporais
title_sort Mineração e visualização de coleções de séries temporais
author Alencar, Aretha Barbosa
author_facet Alencar, Aretha Barbosa
author_role author
dc.contributor.none.fl_str_mv Oliveira, Maria Cristina Ferreira de
dc.contributor.author.fl_str_mv Alencar, Aretha Barbosa
dc.subject.por.fl_str_mv Data mining
Information visualization
Mineração de dados
Séries temporais
Time series
Visualização de informação
topic Data mining
Information visualization
Mineração de dados
Séries temporais
Time series
Visualização de informação
description A análise de séries temporais gera muitos desafios para profisionais em um grande número de domínios. Várias soluções de visualização integrada com algoritmos de mineração já foram propostas para tarefas exploratórias em coleções de séries temporais. À medida que o conjunto de dados cresce, estas soluções falham em promover uma boa associação entre séries temporais similares. Neste trabalho, é apresentada uma ferramenta para a análise exploratória e mineração de conjuntos de séries temporais que adota uma representação visual baseada em medidas de dissimilaridade entre séries. Esta representação é criada usando técnicas rápidas de projeção, de forma que as séries temporais possam ser visualizadas em espaços bidimensionais. Vários tipos de atributos visuais e conexões no grafo resultante podem ser utilizados para suportar a exploração dessa representação. Também é possível aplicar algumas tarefas de mineração de dados, como a classificação, para apoiar a busca por padrões. As visualizações resultantes têm se mostrado muito úteis na identificação de grupos de séries com comportamentos similares, que são mapeadas para a mesma vizinhança no espaço bidimensional. Grupos visuais de elementos, assim como outliers, são facilmente identficáveis. A ferramenta é avaliada por meio de sua aplicação a vários conjuntos de séries. Um dos estudos de caso explora dados de vazões de usinas hidrelétricas no Brasil, uma aplicação estratégica para o planejamento energético.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012008-103928/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012008-103928/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257088222298112