Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol

Detalhes bibliográficos
Autor(a) principal: Boaes, Tatiane da Silva
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/97/97140/tde-27092022-084342/
Resumo: Grande parte do fornecimento de energia e produção de materiais é realizada utilizando recursos fósseis, no entanto, essa é uma fonte de energia limitada e não renovável. Desta forma, fontes alternativas são buscadas, como o aproveitamento de biomassas vegetais em um conceito de biorrefinaria. Além da ampla experiência no Brasil na utilização da cana para a produção de açúcar, bioetanol e energia elétrica, também podem ser produzidos bioprodutos a partir da utilização do bagaço e palha de cana que são subprodutos do setor sucroalcooleiro. Grande parte das pesquisas é voltada para a utilização da biomassa para a produção de bioetanol de segunda geração, mais precisamente da fração celulósica rica em glicose, porém, a fração hemicelulósica a qual é constituída principalmente da pentose xilose, pode ser convertida em compostos químicos de alto valor agregado, como exemplo o xilitol. O xilitol é comercialmente produzido por via química a partir de materiais ricos em xilana e possui demanda e mercado crescentes. Deste modo, intensivas pesquisas são realizadas na busca de uma tecnologia de produção biotecnológica deste adoçante, de forma a que este processo possa ser competitivo ao químico. Várias etapas são necessárias no processo biotecnológico como a hidrólise ácida diluída da biomassa lignocelulósica, concentração à vácuo, destoxificação, suplementação nutricional do hidrolisado e a fermentação por microrganismos assimiladores de xilose. Assim, este trabalho buscou aprimorar este bioprocesso avaliando a possibilidade de eliminação da etapa como concentração à vácuo do hidrolisado a partir da otimização das condições de hidrólise ácida diluída para assim maximizar o teor de xilose e minimizar a de compostos potencialmente inibitórios ao metabolismo microbiano. Inicialmente foi feita a caracterização química da mistura de bagaço e palha de cana (1:1) (m/m) sendo a composição desta biomassa de 34,4, 22,9, 22,0, 3,5 e 9,3 g/100g de celulose, hemicelulose, lignina, cinzas e extrativos respectivamente. Na etapa seguinte ocorreu a hidrólise ácida diluída utilizando o planejamento fatorial 24 com triplicata no ponto central e experimentos estrela rotacional em que as variáveis de estudo foram temperatura, tempo, concentração de ácido e relação sólido:líquido. De acordo com os resultados, as condições que apresentaram elevados teores de açúcares (xilose, glicose e arabinose), com destaque para a xilose, cujas valores foram superiores a 60 g/L são referentes ao ensaio de Nº 24 em que a temperatura foi de 135 ºC, tempo de residência 15 minutos, concentração de ácido de 2% (m/v) e relação sólido:líquido 0,25 (m/v). E ainda nesta condição em relação aos compostos tóxicos ácido acético, furfural, 5-HMF e fenólicos os valores obtidos (g/L) foram de 9,38, 0,022, 0,027 e 11,57 respectivamente. Além disso dos fatores estudados (tempo, temperatura, concentração de ácido e relação sólido:líquido), a temperatura foi a variável de maior influência na concentração destes compostos no hidrolisado nos demais ensaios. A partir desses resultados foi possível estabelecer que a melhor condição de hidrólise para a obtenção de máximo valor de açúcar xilose visando a produção de xilitol foi a de Nº 24.
id USP_3d02a9f8765eb86af0313f15bef3d84a
oai_identifier_str oai:teses.usp.br:tde-27092022-084342
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitolImprovement of obtaining the hemicellulose hydrolyzate from the mixture of bagasse and sugarcane straw aiming at the production of xylitolBagaço e palha de cana-de-açúcarCompostos tóxicosDilute acid hydrolysisHemicellulose hydrolyzateHidrolisado hemicelulósicoHidrólise ácida diluídaSugarcane bagasse and strawToxic compoundsXilitolXylitolGrande parte do fornecimento de energia e produção de materiais é realizada utilizando recursos fósseis, no entanto, essa é uma fonte de energia limitada e não renovável. Desta forma, fontes alternativas são buscadas, como o aproveitamento de biomassas vegetais em um conceito de biorrefinaria. Além da ampla experiência no Brasil na utilização da cana para a produção de açúcar, bioetanol e energia elétrica, também podem ser produzidos bioprodutos a partir da utilização do bagaço e palha de cana que são subprodutos do setor sucroalcooleiro. Grande parte das pesquisas é voltada para a utilização da biomassa para a produção de bioetanol de segunda geração, mais precisamente da fração celulósica rica em glicose, porém, a fração hemicelulósica a qual é constituída principalmente da pentose xilose, pode ser convertida em compostos químicos de alto valor agregado, como exemplo o xilitol. O xilitol é comercialmente produzido por via química a partir de materiais ricos em xilana e possui demanda e mercado crescentes. Deste modo, intensivas pesquisas são realizadas na busca de uma tecnologia de produção biotecnológica deste adoçante, de forma a que este processo possa ser competitivo ao químico. Várias etapas são necessárias no processo biotecnológico como a hidrólise ácida diluída da biomassa lignocelulósica, concentração à vácuo, destoxificação, suplementação nutricional do hidrolisado e a fermentação por microrganismos assimiladores de xilose. Assim, este trabalho buscou aprimorar este bioprocesso avaliando a possibilidade de eliminação da etapa como concentração à vácuo do hidrolisado a partir da otimização das condições de hidrólise ácida diluída para assim maximizar o teor de xilose e minimizar a de compostos potencialmente inibitórios ao metabolismo microbiano. Inicialmente foi feita a caracterização química da mistura de bagaço e palha de cana (1:1) (m/m) sendo a composição desta biomassa de 34,4, 22,9, 22,0, 3,5 e 9,3 g/100g de celulose, hemicelulose, lignina, cinzas e extrativos respectivamente. Na etapa seguinte ocorreu a hidrólise ácida diluída utilizando o planejamento fatorial 24 com triplicata no ponto central e experimentos estrela rotacional em que as variáveis de estudo foram temperatura, tempo, concentração de ácido e relação sólido:líquido. De acordo com os resultados, as condições que apresentaram elevados teores de açúcares (xilose, glicose e arabinose), com destaque para a xilose, cujas valores foram superiores a 60 g/L são referentes ao ensaio de Nº 24 em que a temperatura foi de 135 ºC, tempo de residência 15 minutos, concentração de ácido de 2% (m/v) e relação sólido:líquido 0,25 (m/v). E ainda nesta condição em relação aos compostos tóxicos ácido acético, furfural, 5-HMF e fenólicos os valores obtidos (g/L) foram de 9,38, 0,022, 0,027 e 11,57 respectivamente. Além disso dos fatores estudados (tempo, temperatura, concentração de ácido e relação sólido:líquido), a temperatura foi a variável de maior influência na concentração destes compostos no hidrolisado nos demais ensaios. A partir desses resultados foi possível estabelecer que a melhor condição de hidrólise para a obtenção de máximo valor de açúcar xilose visando a produção de xilitol foi a de Nº 24.Much of the energy supply and material production is carried out using fossil resources, however, this is a limited and non-renewable energy source. In this way, alternative sources are sought, such as the use of plant biomass in a biorefinery concept. In addition to the extensive experience in Brazil in the use of sugarcane for the production of sugar, bioethanol and electricity, bioproducts can also be produced from the use of bagasse and sugarcane straw, which are by-products of the sugar-alcohol sector. Much of the research is focused on the use of biomass for the production of second-generation bioethanol, more precisely the cellulosic fraction rich in glucose, however, the hemicellulosic fraction, which consists mainly of pentose xylose, can be converted into chemical compounds of high added value, such as xylitol. Xylitol is commercially produced chemically from materials rich in xylan and has an increasing demand and market. In this way, intensive research is carried out in the search for a technology for the biotechnological production of this sweetener, so that this process can be competitive with the chemical. Several steps are necessary in the biotechnological process, such as dilute acid hydrolysis of lignocellulosic biomass, vacuum concentration, detoxification, nutritional supplementation of the hydrolyzate and fermentation by xylose-assimilating microorganisms. Thus, this work sought to improve this bioprocess by evaluating the possibility of eliminating the step as vacuum concentration of the hydrolyzate from the optimization of dilute acid hydrolysis conditions to maximize the xylose content and minimize the potential inhibitory compounds to microbial metabolism. Initially, the chemical characterization of the mixture of bagasse and sugarcane straw (1:1) (p/p) was carried out, with the composition of this biomass being 34.4, 22.9, 22.0, 3.5 and 9.3 g /100g of cellulose, hemicellulose, lignin, ash and extractives respectively. In the next step, diluted acid hydrolysis took place using a 24 factorial design with triplicate at the central point and rotational star experiments in which the study variables were temperature, time, acid concentration and solid:liquid ratio. According to the results, the conditions that presented high levels of sugars (xylose, glucose and arabinose), especially xylose, whose values were greater than 60 g/L, refer to the test Nº 24 in which the temperature was 135 ºC, residence time 15 minutes, acid concentration of 2% (p/v) and solid:liquid ratio 0.25 (p/v). Still in this condition in relation to the toxic compounds acetic acid, furfural, 5-HMF and phenolics the values obtained (g/L) were 9.38, 0.022, 0.027 and 11.57 respectively. In addition to the factors studied (time, temperature, acid concentration and solid:liquid ratio), temperature was the variable with the greatest influence on the concentration of these compounds in the hydrolyzate in the other tests. From these results it was possible to establish that the best hydrolysis condition to obtain the maximum value of xylose sugar aiming at the production of xylitol was Nº 24.Biblioteca Digitais de Teses e Dissertações da USPFelipe, Maria das Graças de AlmeidaBoaes, Tatiane da Silva2022-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/97/97140/tde-27092022-084342/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-09-27T11:48:50Zoai:teses.usp.br:tde-27092022-084342Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-09-27T11:48:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
Improvement of obtaining the hemicellulose hydrolyzate from the mixture of bagasse and sugarcane straw aiming at the production of xylitol
title Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
spellingShingle Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
Boaes, Tatiane da Silva
Bagaço e palha de cana-de-açúcar
Compostos tóxicos
Dilute acid hydrolysis
Hemicellulose hydrolyzate
Hidrolisado hemicelulósico
Hidrólise ácida diluída
Sugarcane bagasse and straw
Toxic compounds
Xilitol
Xylitol
title_short Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
title_full Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
title_fullStr Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
title_full_unstemmed Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
title_sort Aprimoramento da obtenção do hidrolisado hemicelulósico a partir da mistura do bagaço e palha de cana-de-açúcar visando a produção de xilitol
author Boaes, Tatiane da Silva
author_facet Boaes, Tatiane da Silva
author_role author
dc.contributor.none.fl_str_mv Felipe, Maria das Graças de Almeida
dc.contributor.author.fl_str_mv Boaes, Tatiane da Silva
dc.subject.por.fl_str_mv Bagaço e palha de cana-de-açúcar
Compostos tóxicos
Dilute acid hydrolysis
Hemicellulose hydrolyzate
Hidrolisado hemicelulósico
Hidrólise ácida diluída
Sugarcane bagasse and straw
Toxic compounds
Xilitol
Xylitol
topic Bagaço e palha de cana-de-açúcar
Compostos tóxicos
Dilute acid hydrolysis
Hemicellulose hydrolyzate
Hidrolisado hemicelulósico
Hidrólise ácida diluída
Sugarcane bagasse and straw
Toxic compounds
Xilitol
Xylitol
description Grande parte do fornecimento de energia e produção de materiais é realizada utilizando recursos fósseis, no entanto, essa é uma fonte de energia limitada e não renovável. Desta forma, fontes alternativas são buscadas, como o aproveitamento de biomassas vegetais em um conceito de biorrefinaria. Além da ampla experiência no Brasil na utilização da cana para a produção de açúcar, bioetanol e energia elétrica, também podem ser produzidos bioprodutos a partir da utilização do bagaço e palha de cana que são subprodutos do setor sucroalcooleiro. Grande parte das pesquisas é voltada para a utilização da biomassa para a produção de bioetanol de segunda geração, mais precisamente da fração celulósica rica em glicose, porém, a fração hemicelulósica a qual é constituída principalmente da pentose xilose, pode ser convertida em compostos químicos de alto valor agregado, como exemplo o xilitol. O xilitol é comercialmente produzido por via química a partir de materiais ricos em xilana e possui demanda e mercado crescentes. Deste modo, intensivas pesquisas são realizadas na busca de uma tecnologia de produção biotecnológica deste adoçante, de forma a que este processo possa ser competitivo ao químico. Várias etapas são necessárias no processo biotecnológico como a hidrólise ácida diluída da biomassa lignocelulósica, concentração à vácuo, destoxificação, suplementação nutricional do hidrolisado e a fermentação por microrganismos assimiladores de xilose. Assim, este trabalho buscou aprimorar este bioprocesso avaliando a possibilidade de eliminação da etapa como concentração à vácuo do hidrolisado a partir da otimização das condições de hidrólise ácida diluída para assim maximizar o teor de xilose e minimizar a de compostos potencialmente inibitórios ao metabolismo microbiano. Inicialmente foi feita a caracterização química da mistura de bagaço e palha de cana (1:1) (m/m) sendo a composição desta biomassa de 34,4, 22,9, 22,0, 3,5 e 9,3 g/100g de celulose, hemicelulose, lignina, cinzas e extrativos respectivamente. Na etapa seguinte ocorreu a hidrólise ácida diluída utilizando o planejamento fatorial 24 com triplicata no ponto central e experimentos estrela rotacional em que as variáveis de estudo foram temperatura, tempo, concentração de ácido e relação sólido:líquido. De acordo com os resultados, as condições que apresentaram elevados teores de açúcares (xilose, glicose e arabinose), com destaque para a xilose, cujas valores foram superiores a 60 g/L são referentes ao ensaio de Nº 24 em que a temperatura foi de 135 ºC, tempo de residência 15 minutos, concentração de ácido de 2% (m/v) e relação sólido:líquido 0,25 (m/v). E ainda nesta condição em relação aos compostos tóxicos ácido acético, furfural, 5-HMF e fenólicos os valores obtidos (g/L) foram de 9,38, 0,022, 0,027 e 11,57 respectivamente. Além disso dos fatores estudados (tempo, temperatura, concentração de ácido e relação sólido:líquido), a temperatura foi a variável de maior influência na concentração destes compostos no hidrolisado nos demais ensaios. A partir desses resultados foi possível estabelecer que a melhor condição de hidrólise para a obtenção de máximo valor de açúcar xilose visando a produção de xilitol foi a de Nº 24.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/97/97140/tde-27092022-084342/
url https://www.teses.usp.br/teses/disponiveis/97/97140/tde-27092022-084342/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257461204975616