Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/ |
Resumo: | The study of quadratic polynomial differential systems on the plane have been shown a tough challenge, there exist hundreds of papers about them which are dated for over a century and until now there exist several topics to be studied and concluded. For instance, the complete characterization of phase portraits of quadratic systems remains unknown and the complete topological classification of such systems has been a complex work. It is well known that the greatest difficult of working with quadratic systems is the quantity of parameters. A (generic) quadratic system is defined by 12 parameters, however by using affine transformations and time rescaling one can reduce this number by five, but yet this is a very large number, once the corresponding bifurcation diagram is a fivedimensional euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order to study families of quadratic systems with specific properties (for instance, according to the structural stability or possessing classes of invariant algebraic curves) with the purpose of reducing even more (when it is possible) this quantity of parameters. The main goal of this thesis is to contribute to the classification of the quadratic systems on the plane. More precisely, we present the complete study (modulo islands) of the bifurcation diagram of two families of quadratic systems possessing specific properties on their singularities, we do the complete topological classification (modulo limit cycles) of all the phase portraits of two sets of quadratic systems of codimension two and we perform the classification of quadratic differential systems with invariant ellipses according to their configurations of invariant ellipses and invariant lines. It is worth mentioning that these three works represent three different approaches to the study of quadratic systems and each one of them uses different techniques, which all together are useful towards the final goal of classifying phase portraits. |
id |
USP_3e7ecc204e099a66f927e88b6f559998 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18052021-121432 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipsesInvestigação geométrica e topológica de algumas famílias de sistemas diferenciais quadráticos possuindo selas-nós ou elipses invariantesClassificação geométrica e topológicaConfiguração de elipses e retas invariantesConfiguration of invariant ellipses and linesGeometrical and topological classificationInvariant polynomialInvariante polinomialPhase portraitQuadratic systemRetrato de faseSistema quadráticoThe study of quadratic polynomial differential systems on the plane have been shown a tough challenge, there exist hundreds of papers about them which are dated for over a century and until now there exist several topics to be studied and concluded. For instance, the complete characterization of phase portraits of quadratic systems remains unknown and the complete topological classification of such systems has been a complex work. It is well known that the greatest difficult of working with quadratic systems is the quantity of parameters. A (generic) quadratic system is defined by 12 parameters, however by using affine transformations and time rescaling one can reduce this number by five, but yet this is a very large number, once the corresponding bifurcation diagram is a fivedimensional euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order to study families of quadratic systems with specific properties (for instance, according to the structural stability or possessing classes of invariant algebraic curves) with the purpose of reducing even more (when it is possible) this quantity of parameters. The main goal of this thesis is to contribute to the classification of the quadratic systems on the plane. More precisely, we present the complete study (modulo islands) of the bifurcation diagram of two families of quadratic systems possessing specific properties on their singularities, we do the complete topological classification (modulo limit cycles) of all the phase portraits of two sets of quadratic systems of codimension two and we perform the classification of quadratic differential systems with invariant ellipses according to their configurations of invariant ellipses and invariant lines. It is worth mentioning that these three works represent three different approaches to the study of quadratic systems and each one of them uses different techniques, which all together are useful towards the final goal of classifying phase portraits.O estudo dos sistemas diferenciais polinomiais quadráticos no plano tem se demonstrado desafiador, existem centenas de artigos datados de mais de um século sobre esse tema e ainda existem muitos tópicos para serem estudados e concluídos. Por exemplo, a caracterização completa dos retratos de fase de sistemas quadráticos permanece desconhecida e a classificação topológica completa de tais sistemas tem sido um trabalho complexo. É bem sabido que a principal dificuldade de se trabalhar com os sistemas quadráticos é a quantidade de parâmetros. Um sistema quadrático (genérico) é definido por 12 parâmetros, entretanto, usando transformações afins e reescala temporal podese reduzir este número para cinco, mas ainda são muitos parâmetros, uma vez que o correspondente diagrama de bifurcação é um espaço euclideano de dimensão cinco. Desta forma, fazse conveniente utilizar algumas ferramentas (a Teoria dos Invariantes, por exemplo) de modo a estudar famílias de sistemas quadráticos com propriedades específicas (por exemplo, de acordo com a estabilidade estrutural ou possuindo classes de curvas algébricas invariantes) para reduzir ainda mais (quando possível) essa quantidade de parâmetros. Nesta tese objetivamos contribuir com a classificação dos sistemas quadráticos no plano. Mais precisamente, apresentamos o estudo completo (módulo ilhas) do diagrama de bifurcação de duas famílias de sistemas quadráticos com propriedades específicas em suas singularidades. Fazemos a classificação topológica completa de todos os retratos de fases (módulo ciclos limites) de dois conjuntos de sistemas quadráticos de codimensão dois e fazemos a classificação de todos os sistemas quadráticos que possuem elipses invariantes de acordo com a chamada configuração de elipses invariantes e retas invariantes. Vale a pena ressaltar que esses trabalhos representam três abordagens distintas para o estudo dos sistemas quadráticos, e cada um deles utiliza técnicas diferentes, que em conjunto são úteis para o objetivo final de classificar retratos de fases.Biblioteca Digitais de Teses e Dissertações da USPFerragud, Joan Carles ArtésOliveira, Regilene Delazari dos SantosRezende, Alex CarlucciMota, Marcos Coutinho2021-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-18T18:20:02Zoai:teses.usp.br:tde-18052021-121432Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-18T18:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses Investigação geométrica e topológica de algumas famílias de sistemas diferenciais quadráticos possuindo selas-nós ou elipses invariantes |
title |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses |
spellingShingle |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses Mota, Marcos Coutinho Classificação geométrica e topológica Configuração de elipses e retas invariantes Configuration of invariant ellipses and lines Geometrical and topological classification Invariant polynomial Invariante polinomial Phase portrait Quadratic system Retrato de fase Sistema quadrático |
title_short |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses |
title_full |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses |
title_fullStr |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses |
title_full_unstemmed |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses |
title_sort |
Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses |
author |
Mota, Marcos Coutinho |
author_facet |
Mota, Marcos Coutinho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferragud, Joan Carles Artés Oliveira, Regilene Delazari dos Santos Rezende, Alex Carlucci |
dc.contributor.author.fl_str_mv |
Mota, Marcos Coutinho |
dc.subject.por.fl_str_mv |
Classificação geométrica e topológica Configuração de elipses e retas invariantes Configuration of invariant ellipses and lines Geometrical and topological classification Invariant polynomial Invariante polinomial Phase portrait Quadratic system Retrato de fase Sistema quadrático |
topic |
Classificação geométrica e topológica Configuração de elipses e retas invariantes Configuration of invariant ellipses and lines Geometrical and topological classification Invariant polynomial Invariante polinomial Phase portrait Quadratic system Retrato de fase Sistema quadrático |
description |
The study of quadratic polynomial differential systems on the plane have been shown a tough challenge, there exist hundreds of papers about them which are dated for over a century and until now there exist several topics to be studied and concluded. For instance, the complete characterization of phase portraits of quadratic systems remains unknown and the complete topological classification of such systems has been a complex work. It is well known that the greatest difficult of working with quadratic systems is the quantity of parameters. A (generic) quadratic system is defined by 12 parameters, however by using affine transformations and time rescaling one can reduce this number by five, but yet this is a very large number, once the corresponding bifurcation diagram is a fivedimensional euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order to study families of quadratic systems with specific properties (for instance, according to the structural stability or possessing classes of invariant algebraic curves) with the purpose of reducing even more (when it is possible) this quantity of parameters. The main goal of this thesis is to contribute to the classification of the quadratic systems on the plane. More precisely, we present the complete study (modulo islands) of the bifurcation diagram of two families of quadratic systems possessing specific properties on their singularities, we do the complete topological classification (modulo limit cycles) of all the phase portraits of two sets of quadratic systems of codimension two and we perform the classification of quadratic differential systems with invariant ellipses according to their configurations of invariant ellipses and invariant lines. It is worth mentioning that these three works represent three different approaches to the study of quadratic systems and each one of them uses different techniques, which all together are useful towards the final goal of classifying phase portraits. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257099730419712 |