Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses

Detalhes bibliográficos
Autor(a) principal: Mota, Marcos Coutinho
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
Resumo: The study of quadratic polynomial differential systems on the plane have been shown a tough challenge, there exist hundreds of papers about them which are dated for over a century and until now there exist several topics to be studied and concluded. For instance, the complete characterization of phase portraits of quadratic systems remains unknown and the complete topological classification of such systems has been a complex work. It is well known that the greatest difficult of working with quadratic systems is the quantity of parameters. A (generic) quadratic system is defined by 12 parameters, however by using affine transformations and time rescaling one can reduce this number by five, but yet this is a very large number, once the corresponding bifurcation diagram is a fivedimensional euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order to study families of quadratic systems with specific properties (for instance, according to the structural stability or possessing classes of invariant algebraic curves) with the purpose of reducing even more (when it is possible) this quantity of parameters. The main goal of this thesis is to contribute to the classification of the quadratic systems on the plane. More precisely, we present the complete study (modulo islands) of the bifurcation diagram of two families of quadratic systems possessing specific properties on their singularities, we do the complete topological classification (modulo limit cycles) of all the phase portraits of two sets of quadratic systems of codimension two and we perform the classification of quadratic differential systems with invariant ellipses according to their configurations of invariant ellipses and invariant lines. It is worth mentioning that these three works represent three different approaches to the study of quadratic systems and each one of them uses different techniques, which all together are useful towards the final goal of classifying phase portraits.
id USP_3e7ecc204e099a66f927e88b6f559998
oai_identifier_str oai:teses.usp.br:tde-18052021-121432
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipsesInvestigação geométrica e topológica de algumas famílias de sistemas diferenciais quadráticos possuindo selas-nós ou elipses invariantesClassificação geométrica e topológicaConfiguração de elipses e retas invariantesConfiguration of invariant ellipses and linesGeometrical and topological classificationInvariant polynomialInvariante polinomialPhase portraitQuadratic systemRetrato de faseSistema quadráticoThe study of quadratic polynomial differential systems on the plane have been shown a tough challenge, there exist hundreds of papers about them which are dated for over a century and until now there exist several topics to be studied and concluded. For instance, the complete characterization of phase portraits of quadratic systems remains unknown and the complete topological classification of such systems has been a complex work. It is well known that the greatest difficult of working with quadratic systems is the quantity of parameters. A (generic) quadratic system is defined by 12 parameters, however by using affine transformations and time rescaling one can reduce this number by five, but yet this is a very large number, once the corresponding bifurcation diagram is a fivedimensional euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order to study families of quadratic systems with specific properties (for instance, according to the structural stability or possessing classes of invariant algebraic curves) with the purpose of reducing even more (when it is possible) this quantity of parameters. The main goal of this thesis is to contribute to the classification of the quadratic systems on the plane. More precisely, we present the complete study (modulo islands) of the bifurcation diagram of two families of quadratic systems possessing specific properties on their singularities, we do the complete topological classification (modulo limit cycles) of all the phase portraits of two sets of quadratic systems of codimension two and we perform the classification of quadratic differential systems with invariant ellipses according to their configurations of invariant ellipses and invariant lines. It is worth mentioning that these three works represent three different approaches to the study of quadratic systems and each one of them uses different techniques, which all together are useful towards the final goal of classifying phase portraits.O estudo dos sistemas diferenciais polinomiais quadráticos no plano tem se demonstrado desafiador, existem centenas de artigos datados de mais de um século sobre esse tema e ainda existem muitos tópicos para serem estudados e concluídos. Por exemplo, a caracterização completa dos retratos de fase de sistemas quadráticos permanece desconhecida e a classificação topológica completa de tais sistemas tem sido um trabalho complexo. É bem sabido que a principal dificuldade de se trabalhar com os sistemas quadráticos é a quantidade de parâmetros. Um sistema quadrático (genérico) é definido por 12 parâmetros, entretanto, usando transformações afins e reescala temporal podese reduzir este número para cinco, mas ainda são muitos parâmetros, uma vez que o correspondente diagrama de bifurcação é um espaço euclideano de dimensão cinco. Desta forma, fazse conveniente utilizar algumas ferramentas (a Teoria dos Invariantes, por exemplo) de modo a estudar famílias de sistemas quadráticos com propriedades específicas (por exemplo, de acordo com a estabilidade estrutural ou possuindo classes de curvas algébricas invariantes) para reduzir ainda mais (quando possível) essa quantidade de parâmetros. Nesta tese objetivamos contribuir com a classificação dos sistemas quadráticos no plano. Mais precisamente, apresentamos o estudo completo (módulo ilhas) do diagrama de bifurcação de duas famílias de sistemas quadráticos com propriedades específicas em suas singularidades. Fazemos a classificação topológica completa de todos os retratos de fases (módulo ciclos limites) de dois conjuntos de sistemas quadráticos de codimensão dois e fazemos a classificação de todos os sistemas quadráticos que possuem elipses invariantes de acordo com a chamada configuração de elipses invariantes e retas invariantes. Vale a pena ressaltar que esses trabalhos representam três abordagens distintas para o estudo dos sistemas quadráticos, e cada um deles utiliza técnicas diferentes, que em conjunto são úteis para o objetivo final de classificar retratos de fases.Biblioteca Digitais de Teses e Dissertações da USPFerragud, Joan Carles ArtésOliveira, Regilene Delazari dos SantosRezende, Alex CarlucciMota, Marcos Coutinho2021-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-05-18T18:20:02Zoai:teses.usp.br:tde-18052021-121432Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-18T18:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
Investigação geométrica e topológica de algumas famílias de sistemas diferenciais quadráticos possuindo selas-nós ou elipses invariantes
title Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
spellingShingle Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
Mota, Marcos Coutinho
Classificação geométrica e topológica
Configuração de elipses e retas invariantes
Configuration of invariant ellipses and lines
Geometrical and topological classification
Invariant polynomial
Invariante polinomial
Phase portrait
Quadratic system
Retrato de fase
Sistema quadrático
title_short Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
title_full Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
title_fullStr Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
title_full_unstemmed Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
title_sort Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses
author Mota, Marcos Coutinho
author_facet Mota, Marcos Coutinho
author_role author
dc.contributor.none.fl_str_mv Ferragud, Joan Carles Artés
Oliveira, Regilene Delazari dos Santos
Rezende, Alex Carlucci
dc.contributor.author.fl_str_mv Mota, Marcos Coutinho
dc.subject.por.fl_str_mv Classificação geométrica e topológica
Configuração de elipses e retas invariantes
Configuration of invariant ellipses and lines
Geometrical and topological classification
Invariant polynomial
Invariante polinomial
Phase portrait
Quadratic system
Retrato de fase
Sistema quadrático
topic Classificação geométrica e topológica
Configuração de elipses e retas invariantes
Configuration of invariant ellipses and lines
Geometrical and topological classification
Invariant polynomial
Invariante polinomial
Phase portrait
Quadratic system
Retrato de fase
Sistema quadrático
description The study of quadratic polynomial differential systems on the plane have been shown a tough challenge, there exist hundreds of papers about them which are dated for over a century and until now there exist several topics to be studied and concluded. For instance, the complete characterization of phase portraits of quadratic systems remains unknown and the complete topological classification of such systems has been a complex work. It is well known that the greatest difficult of working with quadratic systems is the quantity of parameters. A (generic) quadratic system is defined by 12 parameters, however by using affine transformations and time rescaling one can reduce this number by five, but yet this is a very large number, once the corresponding bifurcation diagram is a fivedimensional euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order to study families of quadratic systems with specific properties (for instance, according to the structural stability or possessing classes of invariant algebraic curves) with the purpose of reducing even more (when it is possible) this quantity of parameters. The main goal of this thesis is to contribute to the classification of the quadratic systems on the plane. More precisely, we present the complete study (modulo islands) of the bifurcation diagram of two families of quadratic systems possessing specific properties on their singularities, we do the complete topological classification (modulo limit cycles) of all the phase portraits of two sets of quadratic systems of codimension two and we perform the classification of quadratic differential systems with invariant ellipses according to their configurations of invariant ellipses and invariant lines. It is worth mentioning that these three works represent three different approaches to the study of quadratic systems and each one of them uses different techniques, which all together are useful towards the final goal of classifying phase portraits.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
url https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257099730419712