Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/ |
Resumo: | Currently, one of the greatest challenges for the areas of Material Sciences and Structural Engineering is to perform accurate analysis for prediction of damage in composite materials, the evolution of damage and failure. Although several models and failure criterion already exist for the simulation of damage in composite materials, most models do not produce acceptable results for detailed designs. The models currently in use often under or overestimate loads required for the degradation and failure. This occurs as most of these models is based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This approach neglects the inherent anisotropy and heterogeneity of composite materials, which cause several failure mechanisms to occur simultaneously in different materials scales and phases. One possible solution to this problem is to use and/or develop new damage and failure models based on multiscale approaches and physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the main objective of the present work consists on studying and developing multiscale based damage models applied to composite structures manufactured with unidirectional fibers under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. For the development of these models, works found in the literature were critically evaluated and new formulations were studied, adapted and improved upon. The basic methodology is based on using homogenization techniques to obtain degenerated elastic properties from damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale approach. The multiscale approach comprehends three separate models, one in the macroscale for the calculation of accurate stress/strain states in the critical points, and two in the microscale for the prediction of intralaminar damage (matrix cracking). These models interact between themselves, as the results from each one are used as boundary conditions for the other in a computational analysis loop over load steps via an iterative process. The developed models were implemented either stand-alone Python codes or into the finite element analysis package AbaqusTM using its automatization capabilities with Python scripts, as well as subroutines in Fortran (UEL - User Element Subroutine) linked to commercial finite element package AbaqusTM |
id |
USP_3f45037dd8b509c4212a90bc6dbbee16 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14052024-084904 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodologyAnálises em micro e macro escala para o prognóstico de estruturas em material compósito : uma nova metodologia baseada em mecanismos físicosanálise multiescalacomposite materialscontinuum fracture mechanicsfinite element methodmateriais compósitosmecânica da fraturamétodo dos elementos finitosmultiscale analysisCurrently, one of the greatest challenges for the areas of Material Sciences and Structural Engineering is to perform accurate analysis for prediction of damage in composite materials, the evolution of damage and failure. Although several models and failure criterion already exist for the simulation of damage in composite materials, most models do not produce acceptable results for detailed designs. The models currently in use often under or overestimate loads required for the degradation and failure. This occurs as most of these models is based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This approach neglects the inherent anisotropy and heterogeneity of composite materials, which cause several failure mechanisms to occur simultaneously in different materials scales and phases. One possible solution to this problem is to use and/or develop new damage and failure models based on multiscale approaches and physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the main objective of the present work consists on studying and developing multiscale based damage models applied to composite structures manufactured with unidirectional fibers under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. For the development of these models, works found in the literature were critically evaluated and new formulations were studied, adapted and improved upon. The basic methodology is based on using homogenization techniques to obtain degenerated elastic properties from damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale approach. The multiscale approach comprehends three separate models, one in the macroscale for the calculation of accurate stress/strain states in the critical points, and two in the microscale for the prediction of intralaminar damage (matrix cracking). These models interact between themselves, as the results from each one are used as boundary conditions for the other in a computational analysis loop over load steps via an iterative process. The developed models were implemented either stand-alone Python codes or into the finite element analysis package AbaqusTM using its automatization capabilities with Python scripts, as well as subroutines in Fortran (UEL - User Element Subroutine) linked to commercial finite element package AbaqusTMAtualmente, um dos maiores desafios nas áreas de Ciências dos Materiais e Engenharia Estrutural é efetuar análises precisas de previsão de dano em materiais compósitos - evolução e falha. Embora diversos modelos e critérios de falha existam na literatura para a simulação de dano em materiais compósitos, a maior parte dos modelos não produzem resultados aceitáveis para projetos estruturais detalhados. Os modelos atualmente em uso costumeiramente sub ou superestimam as cargas necessárias para a degradação e falha de materiais. Esse fato ocorre, pois, esses modelos são baseados em dados experimentais e/ou semi-empíricos ou modelos fenomenológicos. Essa abordagem negligencia a anisotropia e heterogeneidade inerente de materiais compósitos, que causam diversos mecanismos de falha ocorrendo simultaneamente em diferentes fases e escalas do material. Uma possível solução para esse problema é a utilização e/ou desenvolvimento de novos modelos de dano e falha baseados em abordagens multiescala e mecanismos físicos de falha baseados em Mecânica da Fratura. Nesse cenário, o principal objetivo do presente trabalho consiste no estudo e desenvolvimento de modelos de dano baseados em abordagens multiescala aplicados aos materiais compósitos manufaturados via fibras unidirecionais para diferentes casos de carga: tração pura, flexão pura, tração-flexão e cargas multiaxiais. Para o desenvolvimento desses modelos, publicações foram avaliadas criteriosamente e novas formulações foram estudadas, adaptadas e melhoradas. A metodologia básica se baseia na utilização de técnicas de homogeneização para obter propriedades elástica degeneradas a partir de Volumes Elementares Representativos (VER); o perfil de dano do VER é definido a partir de trincas intralaminares paralelas às fibras e calculadas através de uma abordagem multiescala. Essa abordagem compreende três modelos separados: um para a macro escala utilizado para o cálculo preciso de tensões e deformações em pontos críticos; e dois na microescala para previsão de dano intralaminar. Esses modelos interagem entre si, sendo que os resultados obtidos em alguns modelos são utilizados como condições de contorno em outros de forma iterativa. Esses modelos foram implementados utilizando códigos em linguagem Python independentes e de automatização, bem como sub-rotinas (UEL - User Element Subroutine) em linguagem Fortran vinculadas ao pacote comercial de elementos finitos AbaqusTMBiblioteca Digitais de Teses e Dissertações da USPTita, VolneiSartorato, Murilo2018-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-14T13:35:03Zoai:teses.usp.br:tde-14052024-084904Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-14T13:35:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology Análises em micro e macro escala para o prognóstico de estruturas em material compósito : uma nova metodologia baseada em mecanismos físicos |
title |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology |
spellingShingle |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology Sartorato, Murilo análise multiescala composite materials continuum fracture mechanics finite element method materiais compósitos mecânica da fratura método dos elementos finitos multiscale analysis |
title_short |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology |
title_full |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology |
title_fullStr |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology |
title_full_unstemmed |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology |
title_sort |
Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology |
author |
Sartorato, Murilo |
author_facet |
Sartorato, Murilo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tita, Volnei |
dc.contributor.author.fl_str_mv |
Sartorato, Murilo |
dc.subject.por.fl_str_mv |
análise multiescala composite materials continuum fracture mechanics finite element method materiais compósitos mecânica da fratura método dos elementos finitos multiscale analysis |
topic |
análise multiescala composite materials continuum fracture mechanics finite element method materiais compósitos mecânica da fratura método dos elementos finitos multiscale analysis |
description |
Currently, one of the greatest challenges for the areas of Material Sciences and Structural Engineering is to perform accurate analysis for prediction of damage in composite materials, the evolution of damage and failure. Although several models and failure criterion already exist for the simulation of damage in composite materials, most models do not produce acceptable results for detailed designs. The models currently in use often under or overestimate loads required for the degradation and failure. This occurs as most of these models is based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This approach neglects the inherent anisotropy and heterogeneity of composite materials, which cause several failure mechanisms to occur simultaneously in different materials scales and phases. One possible solution to this problem is to use and/or develop new damage and failure models based on multiscale approaches and physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the main objective of the present work consists on studying and developing multiscale based damage models applied to composite structures manufactured with unidirectional fibers under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. For the development of these models, works found in the literature were critically evaluated and new formulations were studied, adapted and improved upon. The basic methodology is based on using homogenization techniques to obtain degenerated elastic properties from damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale approach. The multiscale approach comprehends three separate models, one in the macroscale for the calculation of accurate stress/strain states in the critical points, and two in the microscale for the prediction of intralaminar damage (matrix cracking). These models interact between themselves, as the results from each one are used as boundary conditions for the other in a computational analysis loop over load steps via an iterative process. The developed models were implemented either stand-alone Python codes or into the finite element analysis package AbaqusTM using its automatization capabilities with Python scripts, as well as subroutines in Fortran (UEL - User Element Subroutine) linked to commercial finite element package AbaqusTM |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256963990159360 |