Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology

Detalhes bibliográficos
Autor(a) principal: Sartorato, Murilo
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/
Resumo: Currently, one of the greatest challenges for the areas of Material Sciences and Structural Engineering is to perform accurate analysis for prediction of damage in composite materials, the evolution of damage and failure. Although several models and failure criterion already exist for the simulation of damage in composite materials, most models do not produce acceptable results for detailed designs. The models currently in use often under or overestimate loads required for the degradation and failure. This occurs as most of these models is based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This approach neglects the inherent anisotropy and heterogeneity of composite materials, which cause several failure mechanisms to occur simultaneously in different materials scales and phases. One possible solution to this problem is to use and/or develop new damage and failure models based on multiscale approaches and physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the main objective of the present work consists on studying and developing multiscale based damage models applied to composite structures manufactured with unidirectional fibers under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. For the development of these models, works found in the literature were critically evaluated and new formulations were studied, adapted and improved upon. The basic methodology is based on using homogenization techniques to obtain degenerated elastic properties from damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale approach. The multiscale approach comprehends three separate models, one in the macroscale for the calculation of accurate stress/strain states in the critical points, and two in the microscale for the prediction of intralaminar damage (matrix cracking). These models interact between themselves, as the results from each one are used as boundary conditions for the other in a computational analysis loop over load steps via an iterative process. The developed models were implemented either stand-alone Python codes or into the finite element analysis package AbaqusTM using its automatization capabilities with Python scripts, as well as subroutines in Fortran (UEL - User Element Subroutine) linked to commercial finite element package AbaqusTM
id USP_3f45037dd8b509c4212a90bc6dbbee16
oai_identifier_str oai:teses.usp.br:tde-14052024-084904
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodologyAnálises em micro e macro escala para o prognóstico de estruturas em material compósito : uma nova metodologia baseada em mecanismos físicosanálise multiescalacomposite materialscontinuum fracture mechanicsfinite element methodmateriais compósitosmecânica da fraturamétodo dos elementos finitosmultiscale analysisCurrently, one of the greatest challenges for the areas of Material Sciences and Structural Engineering is to perform accurate analysis for prediction of damage in composite materials, the evolution of damage and failure. Although several models and failure criterion already exist for the simulation of damage in composite materials, most models do not produce acceptable results for detailed designs. The models currently in use often under or overestimate loads required for the degradation and failure. This occurs as most of these models is based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This approach neglects the inherent anisotropy and heterogeneity of composite materials, which cause several failure mechanisms to occur simultaneously in different materials scales and phases. One possible solution to this problem is to use and/or develop new damage and failure models based on multiscale approaches and physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the main objective of the present work consists on studying and developing multiscale based damage models applied to composite structures manufactured with unidirectional fibers under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. For the development of these models, works found in the literature were critically evaluated and new formulations were studied, adapted and improved upon. The basic methodology is based on using homogenization techniques to obtain degenerated elastic properties from damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale approach. The multiscale approach comprehends three separate models, one in the macroscale for the calculation of accurate stress/strain states in the critical points, and two in the microscale for the prediction of intralaminar damage (matrix cracking). These models interact between themselves, as the results from each one are used as boundary conditions for the other in a computational analysis loop over load steps via an iterative process. The developed models were implemented either stand-alone Python codes or into the finite element analysis package AbaqusTM using its automatization capabilities with Python scripts, as well as subroutines in Fortran (UEL - User Element Subroutine) linked to commercial finite element package AbaqusTMAtualmente, um dos maiores desafios nas áreas de Ciências dos Materiais e Engenharia Estrutural é efetuar análises precisas de previsão de dano em materiais compósitos - evolução e falha. Embora diversos modelos e critérios de falha existam na literatura para a simulação de dano em materiais compósitos, a maior parte dos modelos não produzem resultados aceitáveis para projetos estruturais detalhados. Os modelos atualmente em uso costumeiramente sub ou superestimam as cargas necessárias para a degradação e falha de materiais. Esse fato ocorre, pois, esses modelos são baseados em dados experimentais e/ou semi-empíricos ou modelos fenomenológicos. Essa abordagem negligencia a anisotropia e heterogeneidade inerente de materiais compósitos, que causam diversos mecanismos de falha ocorrendo simultaneamente em diferentes fases e escalas do material. Uma possível solução para esse problema é a utilização e/ou desenvolvimento de novos modelos de dano e falha baseados em abordagens multiescala e mecanismos físicos de falha baseados em Mecânica da Fratura. Nesse cenário, o principal objetivo do presente trabalho consiste no estudo e desenvolvimento de modelos de dano baseados em abordagens multiescala aplicados aos materiais compósitos manufaturados via fibras unidirecionais para diferentes casos de carga: tração pura, flexão pura, tração-flexão e cargas multiaxiais. Para o desenvolvimento desses modelos, publicações foram avaliadas criteriosamente e novas formulações foram estudadas, adaptadas e melhoradas. A metodologia básica se baseia na utilização de técnicas de homogeneização para obter propriedades elástica degeneradas a partir de Volumes Elementares Representativos (VER); o perfil de dano do VER é definido a partir de trincas intralaminares paralelas às fibras e calculadas através de uma abordagem multiescala. Essa abordagem compreende três modelos separados: um para a macro escala utilizado para o cálculo preciso de tensões e deformações em pontos críticos; e dois na microescala para previsão de dano intralaminar. Esses modelos interagem entre si, sendo que os resultados obtidos em alguns modelos são utilizados como condições de contorno em outros de forma iterativa. Esses modelos foram implementados utilizando códigos em linguagem Python independentes e de automatização, bem como sub-rotinas (UEL - User Element Subroutine) em linguagem Fortran vinculadas ao pacote comercial de elementos finitos AbaqusTMBiblioteca Digitais de Teses e Dissertações da USPTita, VolneiSartorato, Murilo2018-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-14T13:35:03Zoai:teses.usp.br:tde-14052024-084904Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-14T13:35:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
Análises em micro e macro escala para o prognóstico de estruturas em material compósito : uma nova metodologia baseada em mecanismos físicos
title Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
spellingShingle Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
Sartorato, Murilo
análise multiescala
composite materials
continuum fracture mechanics
finite element method
materiais compósitos
mecânica da fratura
método dos elementos finitos
multiscale analysis
title_short Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
title_full Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
title_fullStr Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
title_full_unstemmed Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
title_sort Micro and macroscale analyses for prognosis of composite structures : a new physics based multiscale methodology
author Sartorato, Murilo
author_facet Sartorato, Murilo
author_role author
dc.contributor.none.fl_str_mv Tita, Volnei
dc.contributor.author.fl_str_mv Sartorato, Murilo
dc.subject.por.fl_str_mv análise multiescala
composite materials
continuum fracture mechanics
finite element method
materiais compósitos
mecânica da fratura
método dos elementos finitos
multiscale analysis
topic análise multiescala
composite materials
continuum fracture mechanics
finite element method
materiais compósitos
mecânica da fratura
método dos elementos finitos
multiscale analysis
description Currently, one of the greatest challenges for the areas of Material Sciences and Structural Engineering is to perform accurate analysis for prediction of damage in composite materials, the evolution of damage and failure. Although several models and failure criterion already exist for the simulation of damage in composite materials, most models do not produce acceptable results for detailed designs. The models currently in use often under or overestimate loads required for the degradation and failure. This occurs as most of these models is based upon phenomenological or semi-empirical data, which adjust failure surfaces or failure envelopes to experiments. This approach neglects the inherent anisotropy and heterogeneity of composite materials, which cause several failure mechanisms to occur simultaneously in different materials scales and phases. One possible solution to this problem is to use and/or develop new damage and failure models based on multiscale approaches and physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the main objective of the present work consists on studying and developing multiscale based damage models applied to composite structures manufactured with unidirectional fibers under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. For the development of these models, works found in the literature were critically evaluated and new formulations were studied, adapted and improved upon. The basic methodology is based on using homogenization techniques to obtain degenerated elastic properties from damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale approach. The multiscale approach comprehends three separate models, one in the macroscale for the calculation of accurate stress/strain states in the critical points, and two in the microscale for the prediction of intralaminar damage (matrix cracking). These models interact between themselves, as the results from each one are used as boundary conditions for the other in a computational analysis loop over load steps via an iterative process. The developed models were implemented either stand-alone Python codes or into the finite element analysis package AbaqusTM using its automatization capabilities with Python scripts, as well as subroutines in Fortran (UEL - User Element Subroutine) linked to commercial finite element package AbaqusTM
publishDate 2018
dc.date.none.fl_str_mv 2018-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/
url https://www.teses.usp.br/teses/disponiveis/18/18148/tde-14052024-084904/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256963990159360