Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092017-165153/ |
Resumo: | Imagética motora é um processo mental que produz modulações na amplitude dos sinas de eletroencefalogramas em progresso. Os padrões presentes nestas modulações podem ser usados para classificar este processo mental, mas a identificação destes padrões não é uma tarefa trivial, porque eles estão presentes em bandas de frequências que são específicas para cada pessoa. Neste trabalho, apresenta-se um novo método para selecionar as bandas de frequência específicas para cada pessoa baseado na arquitetura do método Filter Bank Common Spatial Pattern. Para selecionar as bandas de frequência mais relevantes para cada pessoa, o método proposto aplica uma busca exaustiva para encontrar o melhor subconjunto de bandas de frequência contendo os padrões mais discriminativos dentro de um espaço de busca restrito a um tamanho fixo para este subconjunto. Esse tamanho é determinado usando validação cruzada e o método Sequential Forward Floating Selection. O método proposto foi avaliado usando a base de dados pública 2b da BCI Competition IV, mostrando melhores resultados do que todos os métodos também avaliados nessa base de dados. |
id |
USP_3fb4537ab33cc4f7a3a136bf7a209d6f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21092017-165153 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motoraSelection of frequency bands in the classification of motor imagery electroencephalogramsClassificaçãoClassificationElectroencephalogramEletroencefalogramaImagética motoraMotor imageryImagética motora é um processo mental que produz modulações na amplitude dos sinas de eletroencefalogramas em progresso. Os padrões presentes nestas modulações podem ser usados para classificar este processo mental, mas a identificação destes padrões não é uma tarefa trivial, porque eles estão presentes em bandas de frequências que são específicas para cada pessoa. Neste trabalho, apresenta-se um novo método para selecionar as bandas de frequência específicas para cada pessoa baseado na arquitetura do método Filter Bank Common Spatial Pattern. Para selecionar as bandas de frequência mais relevantes para cada pessoa, o método proposto aplica uma busca exaustiva para encontrar o melhor subconjunto de bandas de frequência contendo os padrões mais discriminativos dentro de um espaço de busca restrito a um tamanho fixo para este subconjunto. Esse tamanho é determinado usando validação cruzada e o método Sequential Forward Floating Selection. O método proposto foi avaliado usando a base de dados pública 2b da BCI Competition IV, mostrando melhores resultados do que todos os métodos também avaliados nessa base de dados.Motor imagery is a mental process that when performed, produces modulations in the amplitude of ongoing electroencephalogram signals. These modulations happen following a series of patterns that can be used to classify this mental process, but the detection of those patterns is not a trivial task, because they occur in frequency bands that are specific for each person. In this work, we present a method to select these subject-specific frequency bands based on the arquitecture of the Filter Bank Common Spatial Pattern approach. To select the most relevant frequency bands for each person, our method uses an exhaustive search to find the best subset of frequency bands containing the most discriminative patterns, but with one restriction, the search space is restricted to find a subset with a fixed number of frequency bands. The number is determined using cross-validation and the Sequential Forward Floating Selection method. We demonstrate that, using the data set 2b of the BCI Competition IV, our method is more accurate than current methods evaluated on the same data set.Biblioteca Digitais de Teses e Dissertações da USPRosa, João Luis GarciaBelizario, Paul Augusto Bustios2017-06-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092017-165153/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-21092017-165153Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora Selection of frequency bands in the classification of motor imagery electroencephalograms |
title |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora |
spellingShingle |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora Belizario, Paul Augusto Bustios Classificação Classification Electroencephalogram Eletroencefalograma Imagética motora Motor imagery |
title_short |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora |
title_full |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora |
title_fullStr |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora |
title_full_unstemmed |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora |
title_sort |
Seleção de bandas de frequência na classificação de eletroencefalogramas de imagética motora |
author |
Belizario, Paul Augusto Bustios |
author_facet |
Belizario, Paul Augusto Bustios |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rosa, João Luis Garcia |
dc.contributor.author.fl_str_mv |
Belizario, Paul Augusto Bustios |
dc.subject.por.fl_str_mv |
Classificação Classification Electroencephalogram Eletroencefalograma Imagética motora Motor imagery |
topic |
Classificação Classification Electroencephalogram Eletroencefalograma Imagética motora Motor imagery |
description |
Imagética motora é um processo mental que produz modulações na amplitude dos sinas de eletroencefalogramas em progresso. Os padrões presentes nestas modulações podem ser usados para classificar este processo mental, mas a identificação destes padrões não é uma tarefa trivial, porque eles estão presentes em bandas de frequências que são específicas para cada pessoa. Neste trabalho, apresenta-se um novo método para selecionar as bandas de frequência específicas para cada pessoa baseado na arquitetura do método Filter Bank Common Spatial Pattern. Para selecionar as bandas de frequência mais relevantes para cada pessoa, o método proposto aplica uma busca exaustiva para encontrar o melhor subconjunto de bandas de frequência contendo os padrões mais discriminativos dentro de um espaço de busca restrito a um tamanho fixo para este subconjunto. Esse tamanho é determinado usando validação cruzada e o método Sequential Forward Floating Selection. O método proposto foi avaliado usando a base de dados pública 2b da BCI Competition IV, mostrando melhores resultados do que todos os métodos também avaliados nessa base de dados. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092017-165153/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21092017-165153/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257250138161152 |