Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light

Detalhes bibliográficos
Autor(a) principal: Santo, Tiago Santiago do Espirito
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02062020-083210/
Resumo: The collective scattering of light by a large number of coupled scatterers yields a rich many-body physics, yet treating such a problem in the quantum regime is a challenge. In this thesis, we consider a large atomic cloud in free space and driven by a monochromatic light, where the vacuum modes induce long-range dipole-dipole interactions. In order to study clouds of hundreds of particles, higher order correlation terms are neglected, keeping only quantum correlations between pair of atoms: this allows to reduce the number of degrees of freedom from 22N in the full quantum model to N2. Most of the works in the literature on dipole-dipole interactions have been performed in the linear optics limit, and our techniques allow to compare classical to beyond-semi-classical results. In particular, superradiance and subradiance have been reported in the decay dynamics of the cloud. Differently, by considering a system in the ground state and switching on the pump, we show that superradiance is also present in the Rabi oscillations at a rate obtained from using a single-dipole model for the radiated intensity. A frequency shift in the Rabi oscillations is also reported, which can be interpreted, in a linear dispersion theory, as a signature of a collective multimode vacuum Rabi splitting. While the classical dipoles model captures correctly the dynamics in the low-intensity regime, it fails for higher saturation, where semi-classical methods can be applied successfully. In particular, we observe a quantum subradiant decay in the intensity of the radiated field in the saturated regime. Furthermore, considering the decay dynamics starting from an initially strongly driven cloud, we observed that the states with n < N/2 excited atoms decays much slower than the ones with n > N/2: in other words, the upper part of the Dicke ladder is characterized by a superradiant emission, and the lower part by a subradiant one. Finally, investigating the fluorescence spectrum, we obtained quantum cooperative effects that modify the steady-state spectrum: additional sidebands at twice the Rabi frequency for the system driven at resonance and, out of resonance, an asymmetry in the peaks at the generalized Rabi frequency, and for all detection angles. We also present preliminary results of a sensor model that can capture the time evolution of the spectrum in the decay dynamics, a situation that the quantum regression theorem fails to describe. Several of these results were discussed in parallel with experimental data obtained by an experimental group of collaborators, and others aim to guide future experiments.
id USP_401b7420755f7f5ba28c5973c4e92c9a
oai_identifier_str oai:teses.usp.br:tde-02062020-083210
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical lightEfeitos coletivos quânticos em uma nuvem diluída de átomos de dois níveis interagindo com uma luz clássicaÁtomo de dois níveisÁtomos ultrafriosCollective effectsCooperative EffectsEfeitos coletivosEfeitos cooperativosSubradianceSubradiânciaSuperradianceSuperradiânciaTwo-level atomUltracold atomsThe collective scattering of light by a large number of coupled scatterers yields a rich many-body physics, yet treating such a problem in the quantum regime is a challenge. In this thesis, we consider a large atomic cloud in free space and driven by a monochromatic light, where the vacuum modes induce long-range dipole-dipole interactions. In order to study clouds of hundreds of particles, higher order correlation terms are neglected, keeping only quantum correlations between pair of atoms: this allows to reduce the number of degrees of freedom from 22N in the full quantum model to N2. Most of the works in the literature on dipole-dipole interactions have been performed in the linear optics limit, and our techniques allow to compare classical to beyond-semi-classical results. In particular, superradiance and subradiance have been reported in the decay dynamics of the cloud. Differently, by considering a system in the ground state and switching on the pump, we show that superradiance is also present in the Rabi oscillations at a rate obtained from using a single-dipole model for the radiated intensity. A frequency shift in the Rabi oscillations is also reported, which can be interpreted, in a linear dispersion theory, as a signature of a collective multimode vacuum Rabi splitting. While the classical dipoles model captures correctly the dynamics in the low-intensity regime, it fails for higher saturation, where semi-classical methods can be applied successfully. In particular, we observe a quantum subradiant decay in the intensity of the radiated field in the saturated regime. Furthermore, considering the decay dynamics starting from an initially strongly driven cloud, we observed that the states with n < N/2 excited atoms decays much slower than the ones with n > N/2: in other words, the upper part of the Dicke ladder is characterized by a superradiant emission, and the lower part by a subradiant one. Finally, investigating the fluorescence spectrum, we obtained quantum cooperative effects that modify the steady-state spectrum: additional sidebands at twice the Rabi frequency for the system driven at resonance and, out of resonance, an asymmetry in the peaks at the generalized Rabi frequency, and for all detection angles. We also present preliminary results of a sensor model that can capture the time evolution of the spectrum in the decay dynamics, a situation that the quantum regression theorem fails to describe. Several of these results were discussed in parallel with experimental data obtained by an experimental group of collaborators, and others aim to guide future experiments.O espalhamento coletivo da luz por um grande conjunto de espalhadores acoplados resulta em uma rica física de muitos corpos, contudo, é um grande desafio tratar esse problema no regime quântico. Nessa tese, consideramos uma grande nuvem atômica, com uma luz monocromática excitando o sistema, no espaço livre em que os modos de vácuo induzem interações dipolo-dipolo de longo alcance. Para estudarmos nuvens com centenas de partículas, negligenciamos correlações de ordem superior, mantendo apenas correlações quânticas entre pares de átomos: com isso reduzimos o número de graus de liberdade de 22N no modelo quântico completo para &prop; N2. Grande parte dos trabalhos presentes na literatura de interação dipolo-dipolo foram realizados no regime de óptica linear, nossas técnicas permitem comparar resultados clássicos com resultados semiclassicos e além. Em particular, superradiância e subradiância foram reportados na dinâmica de decaimento da nuvem. Em contra partida, considerando um sistema no estado fundamental e, ligando o bombeamento, nós mostramos que a superradiância também está presente nas oscilações de Rabi com uma taxa obtida ao se utilizar um modelo de um único dipolo superradiante para a intensidade irradiada. Um deslocamento de frequência na frequência de Rabi também foi observado, o qual pode ser interpretado, com teoria de dispersão linear, como uma assinatura de vacuum Rabi splitting coletivo multi-modo. Enquanto o modelo clássico captura corretamente a dinâmica para o regime de baixa intensidade, o mesmo falha aumentando-se a saturação, no entanto podemos aplicar com sucesso modelos semiclássicos. Em particular, observamos um decaimento subradiante quântico na intensidade do campo irradiado no regime saturado. Mais ainda, considerando a dinâmica de decaimento partindo de um estado saturado, observamos que os estados com n < N/2 átomos excitados decaem muito mais lentamente do que estados com n > N/2: em outras palavras, a parte superior da escada de Dicke é caracterizada pela emissão superradiante enquanto a inferior subradiante. Finalmente, investigando o espectro de fluorescência, obtemos efeitos cooperativos que modificam o perfil do espectro: bandas laterais adicionais presentes no dobro da frequência de Rabi para o regime ressonante e, fora de ressonância, uma assimetria dos picos presentes na frequência de Rabi generalizada obtida para todos os ângulos de detecção. Também apresentamos resultados preliminares de de um modelo de sensor que captura a evolução temporal do espectro na dinâmica de decaimento, situação na qual o teorema da regressão quântica não se aplica. Boa parte dos resultados foram discutidos em paralelo com dados experimentais, obtidos por um grupo experimental de colaboradores, a outra parte visa guiar experimentos futuros.Biblioteca Digitais de Teses e Dissertações da USPBachelard, Romain Pierre MarcelSanto, Tiago Santiago do Espirito2020-04-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-02062020-083210/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T20:23:02Zoai:teses.usp.br:tde-02062020-083210Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T20:23:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
Efeitos coletivos quânticos em uma nuvem diluída de átomos de dois níveis interagindo com uma luz clássica
title Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
spellingShingle Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
Santo, Tiago Santiago do Espirito
Átomo de dois níveis
Átomos ultrafrios
Collective effects
Cooperative Effects
Efeitos coletivos
Efeitos cooperativos
Subradiance
Subradiância
Superradiance
Superradiância
Two-level atom
Ultracold atoms
title_short Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
title_full Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
title_fullStr Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
title_full_unstemmed Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
title_sort Quantum collective effects in a dilute cloud of two-level atoms interacting with a classical light
author Santo, Tiago Santiago do Espirito
author_facet Santo, Tiago Santiago do Espirito
author_role author
dc.contributor.none.fl_str_mv Bachelard, Romain Pierre Marcel
dc.contributor.author.fl_str_mv Santo, Tiago Santiago do Espirito
dc.subject.por.fl_str_mv Átomo de dois níveis
Átomos ultrafrios
Collective effects
Cooperative Effects
Efeitos coletivos
Efeitos cooperativos
Subradiance
Subradiância
Superradiance
Superradiância
Two-level atom
Ultracold atoms
topic Átomo de dois níveis
Átomos ultrafrios
Collective effects
Cooperative Effects
Efeitos coletivos
Efeitos cooperativos
Subradiance
Subradiância
Superradiance
Superradiância
Two-level atom
Ultracold atoms
description The collective scattering of light by a large number of coupled scatterers yields a rich many-body physics, yet treating such a problem in the quantum regime is a challenge. In this thesis, we consider a large atomic cloud in free space and driven by a monochromatic light, where the vacuum modes induce long-range dipole-dipole interactions. In order to study clouds of hundreds of particles, higher order correlation terms are neglected, keeping only quantum correlations between pair of atoms: this allows to reduce the number of degrees of freedom from 22N in the full quantum model to N2. Most of the works in the literature on dipole-dipole interactions have been performed in the linear optics limit, and our techniques allow to compare classical to beyond-semi-classical results. In particular, superradiance and subradiance have been reported in the decay dynamics of the cloud. Differently, by considering a system in the ground state and switching on the pump, we show that superradiance is also present in the Rabi oscillations at a rate obtained from using a single-dipole model for the radiated intensity. A frequency shift in the Rabi oscillations is also reported, which can be interpreted, in a linear dispersion theory, as a signature of a collective multimode vacuum Rabi splitting. While the classical dipoles model captures correctly the dynamics in the low-intensity regime, it fails for higher saturation, where semi-classical methods can be applied successfully. In particular, we observe a quantum subradiant decay in the intensity of the radiated field in the saturated regime. Furthermore, considering the decay dynamics starting from an initially strongly driven cloud, we observed that the states with n < N/2 excited atoms decays much slower than the ones with n > N/2: in other words, the upper part of the Dicke ladder is characterized by a superradiant emission, and the lower part by a subradiant one. Finally, investigating the fluorescence spectrum, we obtained quantum cooperative effects that modify the steady-state spectrum: additional sidebands at twice the Rabi frequency for the system driven at resonance and, out of resonance, an asymmetry in the peaks at the generalized Rabi frequency, and for all detection angles. We also present preliminary results of a sensor model that can capture the time evolution of the spectrum in the decay dynamics, a situation that the quantum regression theorem fails to describe. Several of these results were discussed in parallel with experimental data obtained by an experimental group of collaborators, and others aim to guide future experiments.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02062020-083210/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02062020-083210/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256608925548544