Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections

Detalhes bibliográficos
Autor(a) principal: Nogueira, Bruno Magalhães
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06052014-103312/
Resumo: Topic hierarchies are efficient ways of organizing document collections. These structures help users to manage the knowledge contained in textual data. These hierarchies are usually obtained through unsupervised hierarchical clustering algorithms. By not considering the context of the user in the formation of the hierarchical groups, unsupervised topic hierarchies may not attend the user\'s expectations in some cases. One possible solution for this problem is to employ semi-supervised clustering algorithms. These algorithms incorporate the user\'s knowledge through the usage of constraints to the clustering process. However, in the context of semi-supervised hierarchical clustering, the works in the literature do not efficient explore the selection of cases (instances or cluster) to add constraints, neither the interaction of the user with the clustering process. In this sense, in this work we introduce two semi-supervised hierarchical clustering algorithms: HCAC (Hierarchical Confidence-based Active Clustering) and HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). These algorithms employ an active learning approach based in the confidence of cluster merges. When a low confidence merge is detected, the user is invited to decide, from a pool of candidate pairs of clusters, the best cluster merge in that point. In this work, we employ HCAC and HCAC-LC in the extraction of topic hierarchies through the SMITH framework, which is also proposed in this thesis. This framework provides a series of well defined activities that allow the user\'s interaction in the generation of topic hierarchies. The active learning approach used in the HCAC-based algorithms, the kind of queries employed in these algorithms, as well as the SMITH framework for the generation of semi-supervised topic hierarchies are innovations to the state of the art proposed in this thesis. Our experimental results indicate that HCAC and HCAC-LC outperform other semi-supervised hierarchical clustering algorithms in diverse scenarios. The results also indicate that semi-supervised topic hierarchies obtained through the SMITH framework are more intuitive and easier to navigate than unsupervised topic hierarchies
id USP_40de1121b390324c815dcdeeeafa184f
oai_identifier_str oai:teses.usp.br:tde-06052014-103312
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collectionsAgrupamento hierárquico semissupervisionado ativo baseado em confiança e sua aplicação para extração de hierarquias de tópicos a partir de coleções de documentosActive learningAgrupamento semissupervisionadoAprendizado ativoHierarquias de tópicosSemi-supervised clusteringTopic hierarchiesTopic hierarchies are efficient ways of organizing document collections. These structures help users to manage the knowledge contained in textual data. These hierarchies are usually obtained through unsupervised hierarchical clustering algorithms. By not considering the context of the user in the formation of the hierarchical groups, unsupervised topic hierarchies may not attend the user\'s expectations in some cases. One possible solution for this problem is to employ semi-supervised clustering algorithms. These algorithms incorporate the user\'s knowledge through the usage of constraints to the clustering process. However, in the context of semi-supervised hierarchical clustering, the works in the literature do not efficient explore the selection of cases (instances or cluster) to add constraints, neither the interaction of the user with the clustering process. In this sense, in this work we introduce two semi-supervised hierarchical clustering algorithms: HCAC (Hierarchical Confidence-based Active Clustering) and HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). These algorithms employ an active learning approach based in the confidence of cluster merges. When a low confidence merge is detected, the user is invited to decide, from a pool of candidate pairs of clusters, the best cluster merge in that point. In this work, we employ HCAC and HCAC-LC in the extraction of topic hierarchies through the SMITH framework, which is also proposed in this thesis. This framework provides a series of well defined activities that allow the user\'s interaction in the generation of topic hierarchies. The active learning approach used in the HCAC-based algorithms, the kind of queries employed in these algorithms, as well as the SMITH framework for the generation of semi-supervised topic hierarchies are innovations to the state of the art proposed in this thesis. Our experimental results indicate that HCAC and HCAC-LC outperform other semi-supervised hierarchical clustering algorithms in diverse scenarios. The results also indicate that semi-supervised topic hierarchies obtained through the SMITH framework are more intuitive and easier to navigate than unsupervised topic hierarchiesHierarquias de tópicos são formas eficientes de organização de coleções de documentos, auxiliando usuários a gerir o conhecimento materializado nessas publicações textuais. Tais hierarquias são usualmente construídas por meio de algoritmos de agrupamento hierárquico não supervisionado. Entretanto, por não considerarem o contexto do usuário na formação dos grupos, hierarquias de tópicos não supervisionadas nem sempre conseguem atender as suas expectativas. Uma solução para este problema e o emprego de algoritmos de agrupamento semissupervisionado, os quais incorporam o conhecimento de domínio do usuário por meio de restrições. Entretanto, para o contexto de agrupamento hierárquico semissupervisionado, não são eficientemente explorados na literatura métodos de seleção de casos (instâncias ou grupos) para receber restrições, bem como não há formas eficientes de interação do usuário com o processo de agrupamento hierárquico. Dessa maneira, neste trabalho, dois algoritmos de agrupamento hierárquico semissupervisionado são propostos: HCAC (Hierarchical Confidence-based Active Clustering) e HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). Estes algoritmos empregam uma abordagem de aprendizado ativo baseado na confiança de uma junção de clusters. Quando uma junção de baixa confiança e detectada, o usuário e convidado a decidir, em um conjunto de pares de grupos candidatos, a melhor junção naquele ponto. Estes algoritmos são aqui utilizados na extração de hierarquias de tópicos por meio do framework SMITH, também proposto nesse trabalho. Este framework fornece uma série de atividades bem definidas que possibilitam a interação do usuário para a obtenção de hierarquias de tópicos. A abordagem de aprendizado ativo utilizado nos algoritmos HCAC e HCAC-LC, o tipo de restrição utilizada nestes algoritmos, bem como o framework SMITH para obtenção de hierarquias de tópicos semissupervisionadas são inovações ao estado da arte propostos neste trabalho. Os resultados obtidos indicam que os algoritmos HCAC e HCAC-LC superam o desempenho de outros algoritmos hierárquicos semissupervisionados em diversos cenários. Os resultados também indicam que hierarquias de tópico semissupervisionadas obtidas por meio do framework SMITH são mais intuitivas e fáceis de navegar do que aquelas não supervisionadasBiblioteca Digitais de Teses e Dissertações da USPJorge, Alípio Mário GuedesRezende, Solange OliveiraNogueira, Bruno Magalhães2013-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-06052014-103312/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2016-07-28T16:11:49Zoai:teses.usp.br:tde-06052014-103312Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
Agrupamento hierárquico semissupervisionado ativo baseado em confiança e sua aplicação para extração de hierarquias de tópicos a partir de coleções de documentos
title Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
spellingShingle Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
Nogueira, Bruno Magalhães
Active learning
Agrupamento semissupervisionado
Aprendizado ativo
Hierarquias de tópicos
Semi-supervised clustering
Topic hierarchies
title_short Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
title_full Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
title_fullStr Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
title_full_unstemmed Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
title_sort Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
author Nogueira, Bruno Magalhães
author_facet Nogueira, Bruno Magalhães
author_role author
dc.contributor.none.fl_str_mv Jorge, Alípio Mário Guedes
Rezende, Solange Oliveira
dc.contributor.author.fl_str_mv Nogueira, Bruno Magalhães
dc.subject.por.fl_str_mv Active learning
Agrupamento semissupervisionado
Aprendizado ativo
Hierarquias de tópicos
Semi-supervised clustering
Topic hierarchies
topic Active learning
Agrupamento semissupervisionado
Aprendizado ativo
Hierarquias de tópicos
Semi-supervised clustering
Topic hierarchies
description Topic hierarchies are efficient ways of organizing document collections. These structures help users to manage the knowledge contained in textual data. These hierarchies are usually obtained through unsupervised hierarchical clustering algorithms. By not considering the context of the user in the formation of the hierarchical groups, unsupervised topic hierarchies may not attend the user\'s expectations in some cases. One possible solution for this problem is to employ semi-supervised clustering algorithms. These algorithms incorporate the user\'s knowledge through the usage of constraints to the clustering process. However, in the context of semi-supervised hierarchical clustering, the works in the literature do not efficient explore the selection of cases (instances or cluster) to add constraints, neither the interaction of the user with the clustering process. In this sense, in this work we introduce two semi-supervised hierarchical clustering algorithms: HCAC (Hierarchical Confidence-based Active Clustering) and HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). These algorithms employ an active learning approach based in the confidence of cluster merges. When a low confidence merge is detected, the user is invited to decide, from a pool of candidate pairs of clusters, the best cluster merge in that point. In this work, we employ HCAC and HCAC-LC in the extraction of topic hierarchies through the SMITH framework, which is also proposed in this thesis. This framework provides a series of well defined activities that allow the user\'s interaction in the generation of topic hierarchies. The active learning approach used in the HCAC-based algorithms, the kind of queries employed in these algorithms, as well as the SMITH framework for the generation of semi-supervised topic hierarchies are innovations to the state of the art proposed in this thesis. Our experimental results indicate that HCAC and HCAC-LC outperform other semi-supervised hierarchical clustering algorithms in diverse scenarios. The results also indicate that semi-supervised topic hierarchies obtained through the SMITH framework are more intuitive and easier to navigate than unsupervised topic hierarchies
publishDate 2013
dc.date.none.fl_str_mv 2013-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06052014-103312/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06052014-103312/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256713907929088