Domain generalization, invariance and the Time Robust Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-16112021-193305/ |
Resumo: | As time passes by, the performance of real-world predictive models degrades due to distributional shifts. Typical countermeasures, such as retraining and online learning, can be costly and difficult to implement in production, especially when business constraints and culture are accounted for. Causality-based approaches aim at identifying invariant mechanisms from data, thus leading to more robust predictors at the possible expense of a decrease in short-term performance. However, most such approaches scale poorly to high dimensions or require extra knowledge such as segmentation of the data in representative environments. In this work, we review the literature on the limitations of Machine Learning in real settings, with a focus on approaches that use causality concepts to improve generalization. Motivated by the shortcomings discussed above, we develop Time Robust Forests (TRF), a new algorithm for inducing decision trees with an inductive bias towards learning time-invariant rules. The algorithm\'s main innovation is to replace the usual information-gain split criterion (or similar) with a new criterion that examines the imbalance among classes induced by the split through time. Experiments with real data show that our approach can improve long-term generalization, thus offering an interesting alternative for dynamical classification problems. |
id |
USP_4112f06f2df63bbb2dff2fbda3b8954d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16112021-193305 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Domain generalization, invariance and the Time Robust ForestGeneralização de domínio, invariância, e a Floresta Temporalmente RobustaCausal invarianceDomain generalizationGeneralização de domínioInductive biasInvariância causalViés indutivoAs time passes by, the performance of real-world predictive models degrades due to distributional shifts. Typical countermeasures, such as retraining and online learning, can be costly and difficult to implement in production, especially when business constraints and culture are accounted for. Causality-based approaches aim at identifying invariant mechanisms from data, thus leading to more robust predictors at the possible expense of a decrease in short-term performance. However, most such approaches scale poorly to high dimensions or require extra knowledge such as segmentation of the data in representative environments. In this work, we review the literature on the limitations of Machine Learning in real settings, with a focus on approaches that use causality concepts to improve generalization. Motivated by the shortcomings discussed above, we develop Time Robust Forests (TRF), a new algorithm for inducing decision trees with an inductive bias towards learning time-invariant rules. The algorithm\'s main innovation is to replace the usual information-gain split criterion (or similar) with a new criterion that examines the imbalance among classes induced by the split through time. Experiments with real data show that our approach can improve long-term generalization, thus offering an interesting alternative for dynamical classification problems.Com o passar do tempo, o desempenho de modelos preditivos em dados reais degrada devido a mudanças na distribuição dos dados. Medidas típicas como o retreino e aprendizado em tempo-real podem ser custosas e difíceis de implementar em produção, especialmente quando restrições de negócio e cultura organizacional são levados em conta. Abordagens baseadas em causalidade buscam identificar mecanismos invariantes nos dados, resultando em preditores mais robustos às custas da diminuição de desempenho no curto prazo. Grande parte dessas abordagens, porém, não escala bem com alta dimensionalidade, ou requer conhecimento extra, tal como a segmentação do conjunto de dados em ambientes representativos. Neste trabalho, revisamos a literatura sobre as limitações do Aprendizado de Máquina em cenários reais com um foco em abordagens que usam conceitos de causalidade para melhorar a generalização. Motivados pelas deficiências discutidas acima, desenvolvemos a Floresta Temporalmente Robusta (TRF), um novo algoritmo para induzir árvores de decisão com um viés indutivo para o aprendizado de regras temporalmente invariantes. A inovação do algoritmo está em substituir o habitual critério para divisão baseado em ganho de informação por um novo critério que toma em consideração o desbalanceamento entre as classes a serem separadas em uma perspectiva temporal. Experimentos com dados vindos de aplicações reais mostram que nossa abordagem pode melhorar a generalização no longo prazo, oferecendo desta forma uma alternativa para problemas de classificação de caráter dinâmico.Biblioteca Digitais de Teses e Dissertações da USPMauá, Denis DerataniSantos, Luis Gustavo Moneda dos2021-09-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-16112021-193305/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-12-09T20:20:08Zoai:teses.usp.br:tde-16112021-193305Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-12-09T20:20:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Domain generalization, invariance and the Time Robust Forest Generalização de domínio, invariância, e a Floresta Temporalmente Robusta |
title |
Domain generalization, invariance and the Time Robust Forest |
spellingShingle |
Domain generalization, invariance and the Time Robust Forest Santos, Luis Gustavo Moneda dos Causal invariance Domain generalization Generalização de domínio Inductive bias Invariância causal Viés indutivo |
title_short |
Domain generalization, invariance and the Time Robust Forest |
title_full |
Domain generalization, invariance and the Time Robust Forest |
title_fullStr |
Domain generalization, invariance and the Time Robust Forest |
title_full_unstemmed |
Domain generalization, invariance and the Time Robust Forest |
title_sort |
Domain generalization, invariance and the Time Robust Forest |
author |
Santos, Luis Gustavo Moneda dos |
author_facet |
Santos, Luis Gustavo Moneda dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mauá, Denis Deratani |
dc.contributor.author.fl_str_mv |
Santos, Luis Gustavo Moneda dos |
dc.subject.por.fl_str_mv |
Causal invariance Domain generalization Generalização de domínio Inductive bias Invariância causal Viés indutivo |
topic |
Causal invariance Domain generalization Generalização de domínio Inductive bias Invariância causal Viés indutivo |
description |
As time passes by, the performance of real-world predictive models degrades due to distributional shifts. Typical countermeasures, such as retraining and online learning, can be costly and difficult to implement in production, especially when business constraints and culture are accounted for. Causality-based approaches aim at identifying invariant mechanisms from data, thus leading to more robust predictors at the possible expense of a decrease in short-term performance. However, most such approaches scale poorly to high dimensions or require extra knowledge such as segmentation of the data in representative environments. In this work, we review the literature on the limitations of Machine Learning in real settings, with a focus on approaches that use causality concepts to improve generalization. Motivated by the shortcomings discussed above, we develop Time Robust Forests (TRF), a new algorithm for inducing decision trees with an inductive bias towards learning time-invariant rules. The algorithm\'s main innovation is to replace the usual information-gain split criterion (or similar) with a new criterion that examines the imbalance among classes induced by the split through time. Experiments with real data show that our approach can improve long-term generalization, thus offering an interesting alternative for dynamical classification problems. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-16112021-193305/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-16112021-193305/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257085525360640 |