Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados

Detalhes bibliográficos
Autor(a) principal: Gonzalez, Rodrigo Silva
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-01092011-094315/
Resumo: Este trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos.
id USP_416444ede1c8888385c3b75f9a7844a3
oai_identifier_str oai:teses.usp.br:tde-01092011-094315
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenadosGeneralized functions, discrete and continuous growth models and stochastic walks on disordered mediacaminhada do turistacaminhada estocásticacaminhadas deterministacomplex systemsdeterministic walksdinâmica populacionalfunções generalizadasgeneralized functionsgrowth modelsmeios aleatórios.modelos de crescimentorandom mediasistemas complexosstochastic walkstourist walkEste trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos.The present work is splitted into two parts. In the first one we present the generalized logarithm and exponential functions. From them, a wide variety of other generalized functions can be obtained, that allow a unique formulation of oscillatory, exponential an power-law behaviors, that characterize physical phenomena. We also show that it is possible to generalize the stretched exponential probability density function (pdf) and, from there, a wide range of other pdfs that characterize complex systems in Physics. The generalized logarithm and exponential functions are also useful to generalize several continuous growth models into a single formulation: the generalized Tsoullaris and Wallace growth model. The same can be done for discrete growth models, getting, as more general model, the generalized -Ricker growth model. Concluding the first part, we show that the generalized Gaussian pdf (a special case of the generalized stretched exponential) is a solution of the nonlinear diffusion equation, which is a characteristic of deterministic tourist walk. In the second part we present the tourist walk and its two original versions: the deterministic one (DTW) and stochastic one (STW). The first one is a partially self-avoiding walk over a disordered multidimensional medium formed by N points and characterized by a memory . In a one-dimensional environment, it presents a transition from a local exploration to a global one at a well-defined memory value 1 = log2N. In its stochastic version (from which DTW is a particular case), the movement dynamics is ruled by the memory and a temperature T which is responsible by the displacement probabilities. Similar to DTW, STW also has a transition between exploration schemes, characterized by a critical memory and temperature and the walking age (Np) (aging effect). Due the difficulty on analytical treatment of the CET, we introduced the modified stochastic tourist walk (MSTW). In this version, the parameter T plays the role of a maximum distance of one walking step. This modification allowed us to treat analytically the walk, being possible to obtain a general analytical expression for the transition, as function to the parameters , T and Np. These results were validated by numerical experiments.Biblioteca Digitais de Teses e Dissertações da USPMartinez, Alexandre SoutoGonzalez, Rodrigo Silva2011-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-01092011-094315/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-01092011-094315Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
Generalized functions, discrete and continuous growth models and stochastic walks on disordered media
title Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
spellingShingle Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
Gonzalez, Rodrigo Silva
caminhada do turista
caminhada estocástica
caminhadas determinista
complex systems
deterministic walks
dinâmica populacional
funções generalizadas
generalized functions
growth models
meios aleatórios.
modelos de crescimento
random media
sistemas complexos
stochastic walks
tourist walk
title_short Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
title_full Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
title_fullStr Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
title_full_unstemmed Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
title_sort Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados
author Gonzalez, Rodrigo Silva
author_facet Gonzalez, Rodrigo Silva
author_role author
dc.contributor.none.fl_str_mv Martinez, Alexandre Souto
dc.contributor.author.fl_str_mv Gonzalez, Rodrigo Silva
dc.subject.por.fl_str_mv caminhada do turista
caminhada estocástica
caminhadas determinista
complex systems
deterministic walks
dinâmica populacional
funções generalizadas
generalized functions
growth models
meios aleatórios.
modelos de crescimento
random media
sistemas complexos
stochastic walks
tourist walk
topic caminhada do turista
caminhada estocástica
caminhadas determinista
complex systems
deterministic walks
dinâmica populacional
funções generalizadas
generalized functions
growth models
meios aleatórios.
modelos de crescimento
random media
sistemas complexos
stochastic walks
tourist walk
description Este trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos.
publishDate 2011
dc.date.none.fl_str_mv 2011-07-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59135/tde-01092011-094315/
url http://www.teses.usp.br/teses/disponiveis/59/59135/tde-01092011-094315/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256585469952000