Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.

Detalhes bibliográficos
Autor(a) principal: Bortoleto, Eleir Mundim
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3151/tde-21062016-134407/
Resumo: As formulações baseadas na mecânica do contínuo, embora precisas até certo ponto, por vezes não podem ser utilizadas, ou não são conceitualmente corretas para o entendimento de fenômenos em escalas reduzidas. Estas limitações podem aparecer no estudo dos fenômenos tribológicos em escala nanométrica, que passam a necessitar de novos métodos experimentais, teóricos e computacionais que permitam explorar estes fenômenos com a resolução necessária. Simulações atomísticas são capazes de descrever fenômenos em pequena escala, porém, o número necessário de átomos modelados e, portanto, o custo computacional - geralmente torna-se bastante elevado. Por outro lado, os métodos de simulação associados à mecânica do contínuo são mais interessantes em relação ao custo computacional, mas não são precisos na escala atômica. A combinação entre essas duas abordagens pode, então, permitir uma compreensão mais realista dos fenômenos da tribologia. Neste trabalho, discutem-se os conceitos básicos e modelos de atrito em escala atômica e apresentam-se estudos, por meio de simulação numérica, para a análise e compreensão dos mecanismos de atrito e desgaste no contato entre materiais. O problema é abordado em diferentes escalas, e propõe-se uma abordagem conjunta entre a Mecânica do Contínuo e a Dinâmica Molecular. Para tanto, foram executadas simulações numéricas, com complexidade crescente, do contato entre superfícies, partindo-se de um primeiro modelo que simula o efeito de defeitos cristalinos no fenômeno de escorregamento puro, considerando a Dinâmica Molecular. Posteriormente, inseriu-se, nos modelos da mecânica do contínuo, considerações sobre o fenômeno de adesão. A validação dos resultados é feita pela comparação entre as duas abordagens e com a literatura.
id USP_41c42bf22d6ca293adf546311b2da08a
oai_identifier_str oai:teses.usp.br:tde-21062016-134407
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.Thermomechanical behavior and adhesive wear of matrilas at nanoscalemolecular dynamics and continuum mechanics analysis.Atomistic methodAtritoContinuum mechanicsDesgaste dos materiaisDinâmica molecularFrictionMecânica clássicaMecânica do contínuoMétodo atomísticoMolecular dynamicsAs formulações baseadas na mecânica do contínuo, embora precisas até certo ponto, por vezes não podem ser utilizadas, ou não são conceitualmente corretas para o entendimento de fenômenos em escalas reduzidas. Estas limitações podem aparecer no estudo dos fenômenos tribológicos em escala nanométrica, que passam a necessitar de novos métodos experimentais, teóricos e computacionais que permitam explorar estes fenômenos com a resolução necessária. Simulações atomísticas são capazes de descrever fenômenos em pequena escala, porém, o número necessário de átomos modelados e, portanto, o custo computacional - geralmente torna-se bastante elevado. Por outro lado, os métodos de simulação associados à mecânica do contínuo são mais interessantes em relação ao custo computacional, mas não são precisos na escala atômica. A combinação entre essas duas abordagens pode, então, permitir uma compreensão mais realista dos fenômenos da tribologia. Neste trabalho, discutem-se os conceitos básicos e modelos de atrito em escala atômica e apresentam-se estudos, por meio de simulação numérica, para a análise e compreensão dos mecanismos de atrito e desgaste no contato entre materiais. O problema é abordado em diferentes escalas, e propõe-se uma abordagem conjunta entre a Mecânica do Contínuo e a Dinâmica Molecular. Para tanto, foram executadas simulações numéricas, com complexidade crescente, do contato entre superfícies, partindo-se de um primeiro modelo que simula o efeito de defeitos cristalinos no fenômeno de escorregamento puro, considerando a Dinâmica Molecular. Posteriormente, inseriu-se, nos modelos da mecânica do contínuo, considerações sobre o fenômeno de adesão. A validação dos resultados é feita pela comparação entre as duas abordagens e com a literatura.Formulations based on continuum mechanics are generally accurate in a macroscale level, but sometimes cannot be used, or it is not conceptually correct to use for the understanding of small scale phenomena. These limitations may be observed in the study of tribological phenomena at the nanoscale, which may consequently require new experimental, theoretical and computational methods in order to analyze these phenomena with the required resolution. Atomistic simulations may describe phenomena at small scale, but the required number of atoms to be modeled, i.e. the computational cost, usually becomes very high. Moreover, simulation methods associated with continuum mechanics (such as the Finite Element Method - FEM) are more interesting in relation to computational cost, but they are not accurate for atomic scale studies. The combination of these two approaches can then enable a more realistic understanding of tribological phenomena. This work discusses the basic concepts of friction and models for friction at atomic scale. This work also presents studies, by means of numerical simulation, for the analysis of friction and wear mechanisms in the contact of materials. The problem is approached considering different scales, and basing the analysis both on Continuum Mechanics and Molecular Dynamics (MD). For both methods, numerical simulations with increasing complexity were conducted to reproduce the contact between surfaces, starting from an initial model that simulates the effect of crystalline defects during the MD analysis of pure slip. In a second stage, adhesion phenomenon were implemented through continuum mechanics models. The validation of the models and the coupling between the two approaches were conducted by comparison with literature.Biblioteca Digitais de Teses e Dissertações da USPSouza, Roberto Martins deBortoleto, Eleir Mundim2015-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3151/tde-21062016-134407/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:03:48Zoai:teses.usp.br:tde-21062016-134407Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:48Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
Thermomechanical behavior and adhesive wear of matrilas at nanoscalemolecular dynamics and continuum mechanics analysis.
title Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
spellingShingle Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
Bortoleto, Eleir Mundim
Atomistic method
Atrito
Continuum mechanics
Desgaste dos materiais
Dinâmica molecular
Friction
Mecânica clássica
Mecânica do contínuo
Método atomístico
Molecular dynamics
title_short Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
title_full Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
title_fullStr Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
title_full_unstemmed Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
title_sort Comportamento tribo-mecânico e desgaste adesivo de materiais em nanoescala: análises por dinâmica molecular e mecânica do contínuo.
author Bortoleto, Eleir Mundim
author_facet Bortoleto, Eleir Mundim
author_role author
dc.contributor.none.fl_str_mv Souza, Roberto Martins de
dc.contributor.author.fl_str_mv Bortoleto, Eleir Mundim
dc.subject.por.fl_str_mv Atomistic method
Atrito
Continuum mechanics
Desgaste dos materiais
Dinâmica molecular
Friction
Mecânica clássica
Mecânica do contínuo
Método atomístico
Molecular dynamics
topic Atomistic method
Atrito
Continuum mechanics
Desgaste dos materiais
Dinâmica molecular
Friction
Mecânica clássica
Mecânica do contínuo
Método atomístico
Molecular dynamics
description As formulações baseadas na mecânica do contínuo, embora precisas até certo ponto, por vezes não podem ser utilizadas, ou não são conceitualmente corretas para o entendimento de fenômenos em escalas reduzidas. Estas limitações podem aparecer no estudo dos fenômenos tribológicos em escala nanométrica, que passam a necessitar de novos métodos experimentais, teóricos e computacionais que permitam explorar estes fenômenos com a resolução necessária. Simulações atomísticas são capazes de descrever fenômenos em pequena escala, porém, o número necessário de átomos modelados e, portanto, o custo computacional - geralmente torna-se bastante elevado. Por outro lado, os métodos de simulação associados à mecânica do contínuo são mais interessantes em relação ao custo computacional, mas não são precisos na escala atômica. A combinação entre essas duas abordagens pode, então, permitir uma compreensão mais realista dos fenômenos da tribologia. Neste trabalho, discutem-se os conceitos básicos e modelos de atrito em escala atômica e apresentam-se estudos, por meio de simulação numérica, para a análise e compreensão dos mecanismos de atrito e desgaste no contato entre materiais. O problema é abordado em diferentes escalas, e propõe-se uma abordagem conjunta entre a Mecânica do Contínuo e a Dinâmica Molecular. Para tanto, foram executadas simulações numéricas, com complexidade crescente, do contato entre superfícies, partindo-se de um primeiro modelo que simula o efeito de defeitos cristalinos no fenômeno de escorregamento puro, considerando a Dinâmica Molecular. Posteriormente, inseriu-se, nos modelos da mecânica do contínuo, considerações sobre o fenômeno de adesão. A validação dos resultados é feita pela comparação entre as duas abordagens e com a literatura.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3151/tde-21062016-134407/
url http://www.teses.usp.br/teses/disponiveis/3/3151/tde-21062016-134407/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090959357509632