Tungsten gallium-phosphate glasses for high energy radiation detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/ |
Resumo: | Scintillators are materials that convert a single photon of high-energy ionizing radiation, like X-rays, γ-rays, neutrons, α and β particles, into UV-visible photons. Scintillation detectors, which usually consist of a scintillator and photodetector, have played an important role in radiation detection applications, such as in industrial and medical imaging, homeland security and high energy physics experiments. In order to be used as a scintillator, a material must contain luminescent centers which are either extrinsic, when doped with active ions such as the trivalent rare-earth ions, or intrinsic, when the emission originates from molecular centers or lattice defects. Typically, scintillators are inorganic single-crystals due to their high density and excellent emission efficiency. However, the synthesis of these materials, in limited sizes and shapes is extremely costly and time-consuming, hindering industrial production in large market scale. Alternatively, lower-cost materials which offer larger possibilities of shaping, such as glasses, have been investigated this application. Glass is an extremely versatile material that in general provides cost-effective, large-scale production, being easily processed into complex geometries, including special optical fibers. This doctorate project was focused on the development of glasses in the compositional system NaPO3-Ga2O3-Na2WO4 and their detailed characterization from the thermal, structural, spectroscopic and optical viewpoints, in view of their promising application as scintillators. The glasses were obtained with excellent optical quality, very good chemical and thermal stability, and they were characterized by Differential Scanning Calorimetry (DSC), volumetric density measurements, X-ray diffraction, Raman spectroscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (emission and excitation) and radioluminescence. The robustness of the materials associated to its optimum spectroscopic, optical and radioluminescent response indicate that they are promising materials for scintillating devices, worth of further investigation and developments. |
id |
USP_422a29faa8f943eb324db8e711f08b2d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25012023-120919 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Tungsten gallium-phosphate glasses for high energy radiation detectionVidros tungstênio gálio-fosfato para detecção de radiação de alta energiaBroadband emissionCintiladoresEmissão de banda largaGallium phosphate glassesScintillatorsTb3+Tb3+TungstenTungstênioVidros gálio-fosfatoScintillators are materials that convert a single photon of high-energy ionizing radiation, like X-rays, γ-rays, neutrons, α and β particles, into UV-visible photons. Scintillation detectors, which usually consist of a scintillator and photodetector, have played an important role in radiation detection applications, such as in industrial and medical imaging, homeland security and high energy physics experiments. In order to be used as a scintillator, a material must contain luminescent centers which are either extrinsic, when doped with active ions such as the trivalent rare-earth ions, or intrinsic, when the emission originates from molecular centers or lattice defects. Typically, scintillators are inorganic single-crystals due to their high density and excellent emission efficiency. However, the synthesis of these materials, in limited sizes and shapes is extremely costly and time-consuming, hindering industrial production in large market scale. Alternatively, lower-cost materials which offer larger possibilities of shaping, such as glasses, have been investigated this application. Glass is an extremely versatile material that in general provides cost-effective, large-scale production, being easily processed into complex geometries, including special optical fibers. This doctorate project was focused on the development of glasses in the compositional system NaPO3-Ga2O3-Na2WO4 and their detailed characterization from the thermal, structural, spectroscopic and optical viewpoints, in view of their promising application as scintillators. The glasses were obtained with excellent optical quality, very good chemical and thermal stability, and they were characterized by Differential Scanning Calorimetry (DSC), volumetric density measurements, X-ray diffraction, Raman spectroscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (emission and excitation) and radioluminescence. The robustness of the materials associated to its optimum spectroscopic, optical and radioluminescent response indicate that they are promising materials for scintillating devices, worth of further investigation and developments.Cintiladores são materiais que convertem um único fóton de radiação ionizante de alta energia, como raios-X, raios γ nêutrons, partículas α e β, em fótons UV-visíveis. Os detectores de cintilação, que geralmente consistem em um cintilador e um fotodetector, têm desempenhado um papel importante em aplicações de detecção de radiação, como em imagens industriais e médicas, segurança interna e experimentos de física de alta energia. Para ser usado como cintilador, um material deve conter centros luminescentes que são extrínsecos, quando dopados com íons ativos, como os íons trivalentes de terras raras, ou intrínsecos, quando a emissão se origina de centros moleculares ou defeitos de rede. Normalmente, os cintiladores são monocristais inorgânicos devido à sua alta densidade e excelente eficiência de emissão. No entanto, a síntese desses materiais, em tamanhos e formatos limitados, é extremamente custosa e demorada, dificultando a produção industrial em larga escala de mercado. Alternativamente, materiais de baixo custo que oferecem maiores possibilidades de moldagem, como vidros, têm sido investigados nesta aplicação. O vidro é um material extremamente versátil que, em geral, proporciona uma produção econômica e em larga escala, sendo facilmente processado em geometrias complexas, incluindo fibras ópticas especiais. Este projeto de doutorado teve como foco o desenvolvimento de vidros no sistema composicional NaPO3-Ga2O3-Na2WO4 e sua caracterização detalhada do ponto de vista térmico, estrutural, espectroscópico e óptico, tendo em vista sua promissora aplicação como cintiladores. Os vidros foram obtidos com excelente qualidade óptica, muito boa estabilidade química e térmica, e foram caracterizados por Calorimetria de Varredura Diferencial (DSC), medidas de densidade volumétrica, difração de raios X, espectroscopia Raman, Ressonância Magnética Nuclear (RMN), Infravermelho por Transformada de Fourier (FT-IR), espectroscopia de fotoelétrons de raios-X (XPS), absorção UV-Vis, fotoluminescência (emissão e excitação) e radioluminescência. A robustez dos materiais associada à sua ótima resposta espectroscópica, óptica e radioluminescente indicam que são materiais promissores para dispositivos cintilantes, merecendo mais investigações e desenvolvimentos.Biblioteca Digitais de Teses e Dissertações da USPBernardez, Andréa Simone Stucchi de Camargo AlvarezLodi, Thiago Augusto2022-10-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-31T20:14:17Zoai:teses.usp.br:tde-25012023-120919Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-31T20:14:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Tungsten gallium-phosphate glasses for high energy radiation detection Vidros tungstênio gálio-fosfato para detecção de radiação de alta energia |
title |
Tungsten gallium-phosphate glasses for high energy radiation detection |
spellingShingle |
Tungsten gallium-phosphate glasses for high energy radiation detection Lodi, Thiago Augusto Broadband emission Cintiladores Emissão de banda larga Gallium phosphate glasses Scintillators Tb3+ Tb3+ Tungsten Tungstênio Vidros gálio-fosfato |
title_short |
Tungsten gallium-phosphate glasses for high energy radiation detection |
title_full |
Tungsten gallium-phosphate glasses for high energy radiation detection |
title_fullStr |
Tungsten gallium-phosphate glasses for high energy radiation detection |
title_full_unstemmed |
Tungsten gallium-phosphate glasses for high energy radiation detection |
title_sort |
Tungsten gallium-phosphate glasses for high energy radiation detection |
author |
Lodi, Thiago Augusto |
author_facet |
Lodi, Thiago Augusto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bernardez, Andréa Simone Stucchi de Camargo Alvarez |
dc.contributor.author.fl_str_mv |
Lodi, Thiago Augusto |
dc.subject.por.fl_str_mv |
Broadband emission Cintiladores Emissão de banda larga Gallium phosphate glasses Scintillators Tb3+ Tb3+ Tungsten Tungstênio Vidros gálio-fosfato |
topic |
Broadband emission Cintiladores Emissão de banda larga Gallium phosphate glasses Scintillators Tb3+ Tb3+ Tungsten Tungstênio Vidros gálio-fosfato |
description |
Scintillators are materials that convert a single photon of high-energy ionizing radiation, like X-rays, γ-rays, neutrons, α and β particles, into UV-visible photons. Scintillation detectors, which usually consist of a scintillator and photodetector, have played an important role in radiation detection applications, such as in industrial and medical imaging, homeland security and high energy physics experiments. In order to be used as a scintillator, a material must contain luminescent centers which are either extrinsic, when doped with active ions such as the trivalent rare-earth ions, or intrinsic, when the emission originates from molecular centers or lattice defects. Typically, scintillators are inorganic single-crystals due to their high density and excellent emission efficiency. However, the synthesis of these materials, in limited sizes and shapes is extremely costly and time-consuming, hindering industrial production in large market scale. Alternatively, lower-cost materials which offer larger possibilities of shaping, such as glasses, have been investigated this application. Glass is an extremely versatile material that in general provides cost-effective, large-scale production, being easily processed into complex geometries, including special optical fibers. This doctorate project was focused on the development of glasses in the compositional system NaPO3-Ga2O3-Na2WO4 and their detailed characterization from the thermal, structural, spectroscopic and optical viewpoints, in view of their promising application as scintillators. The glasses were obtained with excellent optical quality, very good chemical and thermal stability, and they were characterized by Differential Scanning Calorimetry (DSC), volumetric density measurements, X-ray diffraction, Raman spectroscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (emission and excitation) and radioluminescence. The robustness of the materials associated to its optimum spectroscopic, optical and radioluminescent response indicate that they are promising materials for scintillating devices, worth of further investigation and developments. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257320372830208 |