Tungsten gallium-phosphate glasses for high energy radiation detection

Detalhes bibliográficos
Autor(a) principal: Lodi, Thiago Augusto
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/
Resumo: Scintillators are materials that convert a single photon of high-energy ionizing radiation, like X-rays, γ-rays, neutrons, α and β particles, into UV-visible photons. Scintillation detectors, which usually consist of a scintillator and photodetector, have played an important role in radiation detection applications, such as in industrial and medical imaging, homeland security and high energy physics experiments. In order to be used as a scintillator, a material must contain luminescent centers which are either extrinsic, when doped with active ions such as the trivalent rare-earth ions, or intrinsic, when the emission originates from molecular centers or lattice defects. Typically, scintillators are inorganic single-crystals due to their high density and excellent emission efficiency. However, the synthesis of these materials, in limited sizes and shapes is extremely costly and time-consuming, hindering industrial production in large market scale. Alternatively, lower-cost materials which offer larger possibilities of shaping, such as glasses, have been investigated this application. Glass is an extremely versatile material that in general provides cost-effective, large-scale production, being easily processed into complex geometries, including special optical fibers. This doctorate project was focused on the development of glasses in the compositional system NaPO3-Ga2O3-Na2WO4 and their detailed characterization from the thermal, structural, spectroscopic and optical viewpoints, in view of their promising application as scintillators. The glasses were obtained with excellent optical quality, very good chemical and thermal stability, and they were characterized by Differential Scanning Calorimetry (DSC), volumetric density measurements, X-ray diffraction, Raman spectroscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (emission and excitation) and radioluminescence. The robustness of the materials associated to its optimum spectroscopic, optical and radioluminescent response indicate that they are promising materials for scintillating devices, worth of further investigation and developments.
id USP_422a29faa8f943eb324db8e711f08b2d
oai_identifier_str oai:teses.usp.br:tde-25012023-120919
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Tungsten gallium-phosphate glasses for high energy radiation detectionVidros tungstênio gálio-fosfato para detecção de radiação de alta energiaBroadband emissionCintiladoresEmissão de banda largaGallium phosphate glassesScintillatorsTb3+Tb3+TungstenTungstênioVidros gálio-fosfatoScintillators are materials that convert a single photon of high-energy ionizing radiation, like X-rays, γ-rays, neutrons, α and β particles, into UV-visible photons. Scintillation detectors, which usually consist of a scintillator and photodetector, have played an important role in radiation detection applications, such as in industrial and medical imaging, homeland security and high energy physics experiments. In order to be used as a scintillator, a material must contain luminescent centers which are either extrinsic, when doped with active ions such as the trivalent rare-earth ions, or intrinsic, when the emission originates from molecular centers or lattice defects. Typically, scintillators are inorganic single-crystals due to their high density and excellent emission efficiency. However, the synthesis of these materials, in limited sizes and shapes is extremely costly and time-consuming, hindering industrial production in large market scale. Alternatively, lower-cost materials which offer larger possibilities of shaping, such as glasses, have been investigated this application. Glass is an extremely versatile material that in general provides cost-effective, large-scale production, being easily processed into complex geometries, including special optical fibers. This doctorate project was focused on the development of glasses in the compositional system NaPO3-Ga2O3-Na2WO4 and their detailed characterization from the thermal, structural, spectroscopic and optical viewpoints, in view of their promising application as scintillators. The glasses were obtained with excellent optical quality, very good chemical and thermal stability, and they were characterized by Differential Scanning Calorimetry (DSC), volumetric density measurements, X-ray diffraction, Raman spectroscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (emission and excitation) and radioluminescence. The robustness of the materials associated to its optimum spectroscopic, optical and radioluminescent response indicate that they are promising materials for scintillating devices, worth of further investigation and developments.Cintiladores são materiais que convertem um único fóton de radiação ionizante de alta energia, como raios-X, raios γ nêutrons, partículas α e β, em fótons UV-visíveis. Os detectores de cintilação, que geralmente consistem em um cintilador e um fotodetector, têm desempenhado um papel importante em aplicações de detecção de radiação, como em imagens industriais e médicas, segurança interna e experimentos de física de alta energia. Para ser usado como cintilador, um material deve conter centros luminescentes que são extrínsecos, quando dopados com íons ativos, como os íons trivalentes de terras raras, ou intrínsecos, quando a emissão se origina de centros moleculares ou defeitos de rede. Normalmente, os cintiladores são monocristais inorgânicos devido à sua alta densidade e excelente eficiência de emissão. No entanto, a síntese desses materiais, em tamanhos e formatos limitados, é extremamente custosa e demorada, dificultando a produção industrial em larga escala de mercado. Alternativamente, materiais de baixo custo que oferecem maiores possibilidades de moldagem, como vidros, têm sido investigados nesta aplicação. O vidro é um material extremamente versátil que, em geral, proporciona uma produção econômica e em larga escala, sendo facilmente processado em geometrias complexas, incluindo fibras ópticas especiais. Este projeto de doutorado teve como foco o desenvolvimento de vidros no sistema composicional NaPO3-Ga2O3-Na2WO4 e sua caracterização detalhada do ponto de vista térmico, estrutural, espectroscópico e óptico, tendo em vista sua promissora aplicação como cintiladores. Os vidros foram obtidos com excelente qualidade óptica, muito boa estabilidade química e térmica, e foram caracterizados por Calorimetria de Varredura Diferencial (DSC), medidas de densidade volumétrica, difração de raios X, espectroscopia Raman, Ressonância Magnética Nuclear (RMN), Infravermelho por Transformada de Fourier (FT-IR), espectroscopia de fotoelétrons de raios-X (XPS), absorção UV-Vis, fotoluminescência (emissão e excitação) e radioluminescência. A robustez dos materiais associada à sua ótima resposta espectroscópica, óptica e radioluminescente indicam que são materiais promissores para dispositivos cintilantes, merecendo mais investigações e desenvolvimentos.Biblioteca Digitais de Teses e Dissertações da USPBernardez, Andréa Simone Stucchi de Camargo AlvarezLodi, Thiago Augusto2022-10-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-31T20:14:17Zoai:teses.usp.br:tde-25012023-120919Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-31T20:14:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Tungsten gallium-phosphate glasses for high energy radiation detection
Vidros tungstênio gálio-fosfato para detecção de radiação de alta energia
title Tungsten gallium-phosphate glasses for high energy radiation detection
spellingShingle Tungsten gallium-phosphate glasses for high energy radiation detection
Lodi, Thiago Augusto
Broadband emission
Cintiladores
Emissão de banda larga
Gallium phosphate glasses
Scintillators
Tb3+
Tb3+
Tungsten
Tungstênio
Vidros gálio-fosfato
title_short Tungsten gallium-phosphate glasses for high energy radiation detection
title_full Tungsten gallium-phosphate glasses for high energy radiation detection
title_fullStr Tungsten gallium-phosphate glasses for high energy radiation detection
title_full_unstemmed Tungsten gallium-phosphate glasses for high energy radiation detection
title_sort Tungsten gallium-phosphate glasses for high energy radiation detection
author Lodi, Thiago Augusto
author_facet Lodi, Thiago Augusto
author_role author
dc.contributor.none.fl_str_mv Bernardez, Andréa Simone Stucchi de Camargo Alvarez
dc.contributor.author.fl_str_mv Lodi, Thiago Augusto
dc.subject.por.fl_str_mv Broadband emission
Cintiladores
Emissão de banda larga
Gallium phosphate glasses
Scintillators
Tb3+
Tb3+
Tungsten
Tungstênio
Vidros gálio-fosfato
topic Broadband emission
Cintiladores
Emissão de banda larga
Gallium phosphate glasses
Scintillators
Tb3+
Tb3+
Tungsten
Tungstênio
Vidros gálio-fosfato
description Scintillators are materials that convert a single photon of high-energy ionizing radiation, like X-rays, γ-rays, neutrons, α and β particles, into UV-visible photons. Scintillation detectors, which usually consist of a scintillator and photodetector, have played an important role in radiation detection applications, such as in industrial and medical imaging, homeland security and high energy physics experiments. In order to be used as a scintillator, a material must contain luminescent centers which are either extrinsic, when doped with active ions such as the trivalent rare-earth ions, or intrinsic, when the emission originates from molecular centers or lattice defects. Typically, scintillators are inorganic single-crystals due to their high density and excellent emission efficiency. However, the synthesis of these materials, in limited sizes and shapes is extremely costly and time-consuming, hindering industrial production in large market scale. Alternatively, lower-cost materials which offer larger possibilities of shaping, such as glasses, have been investigated this application. Glass is an extremely versatile material that in general provides cost-effective, large-scale production, being easily processed into complex geometries, including special optical fibers. This doctorate project was focused on the development of glasses in the compositional system NaPO3-Ga2O3-Na2WO4 and their detailed characterization from the thermal, structural, spectroscopic and optical viewpoints, in view of their promising application as scintillators. The glasses were obtained with excellent optical quality, very good chemical and thermal stability, and they were characterized by Differential Scanning Calorimetry (DSC), volumetric density measurements, X-ray diffraction, Raman spectroscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (emission and excitation) and radioluminescence. The robustness of the materials associated to its optimum spectroscopic, optical and radioluminescent response indicate that they are promising materials for scintillating devices, worth of further investigation and developments.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/
url https://www.teses.usp.br/teses/disponiveis/18/18158/tde-25012023-120919/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257320372830208