Robust distributed filtering for sensor networks under parametric uncertainties

Detalhes bibliográficos
Autor(a) principal: Rocha, Kaio Douglas Teofilo
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-17022023-123234/
Resumo: In the past few years, we have witnessed the rapid popularization of networked cooperative multi-agent systems, which consistently move towards becoming ubiquitous in our society. As one of the most well-established examples of such systems, sensor networks have been applied to increasingly more complex systems, demanding even more robust, efficient, and reliable technologies. Distributed state estimation is the most fundamental task that one can accomplish with these networks. The main objective of this thesis is to develop robust distributed filtering strategies for sensor networks applied to linear discrete-time systems subject to model parametric uncertainties. Specifically, we deal with two types of uncertainties: norm-bounded and polytopic. To achieve this goal, we also address other related problems, divided into two categories. The first category of problems refers to the single-sensor state estimation task. Within this category, we consider the scenarios in which the underlying models are perfectly known and where they are subject to each of the two kinds of uncertainty. We propose nominal and robust filters for each situation. The second category concerns the networks with multiple sensors, considering the same three scenarios. For each one, we propose both centralized and distributed estimators. We use the average consensus algorithm to obtain the distributed filters, which approximate their centralized counterparts. The proposed filters are based on the celebrated Kalman filter and present a similar recursive and relatively simple structure. We evaluate the performance of the proposed estimators with application examples, in which we also compare them to existing strategies from the related literature.
id USP_43555e366b169a7c6eb47db1e0e72321
oai_identifier_str oai:teses.usp.br:tde-17022023-123234
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Robust distributed filtering for sensor networks under parametric uncertaintiesFiltragem distribuída robusta para redes de sensores sujeitas à incertezas paramétricasConsensoConsensusDistributed filteringFiltragem distribuídaFiltro de KalmanKalman filterRedes de sensoresSensor networksSistemas com incertezasUncertain systemsIn the past few years, we have witnessed the rapid popularization of networked cooperative multi-agent systems, which consistently move towards becoming ubiquitous in our society. As one of the most well-established examples of such systems, sensor networks have been applied to increasingly more complex systems, demanding even more robust, efficient, and reliable technologies. Distributed state estimation is the most fundamental task that one can accomplish with these networks. The main objective of this thesis is to develop robust distributed filtering strategies for sensor networks applied to linear discrete-time systems subject to model parametric uncertainties. Specifically, we deal with two types of uncertainties: norm-bounded and polytopic. To achieve this goal, we also address other related problems, divided into two categories. The first category of problems refers to the single-sensor state estimation task. Within this category, we consider the scenarios in which the underlying models are perfectly known and where they are subject to each of the two kinds of uncertainty. We propose nominal and robust filters for each situation. The second category concerns the networks with multiple sensors, considering the same three scenarios. For each one, we propose both centralized and distributed estimators. We use the average consensus algorithm to obtain the distributed filters, which approximate their centralized counterparts. The proposed filters are based on the celebrated Kalman filter and present a similar recursive and relatively simple structure. We evaluate the performance of the proposed estimators with application examples, in which we also compare them to existing strategies from the related literature.Nos últimos anos, tem-se testemunhado a rápida popularização de sistemas multiagentes cooperativos em rede, que consistentemente tendem a se tornar onipresentes em nossa sociedade. Sendo um dos exemplos mais bem estabelecidos de tais sistemas, as redes de sensores têm sido aplicadas a sistemas cada vez mais complexos, exigindo tecnologias cada vez mais robustas, eficientes e confiáveis. A estimação distribuída de estado é a tarefa mais fundamental que podemos realizar com essas redes. O principal objetivo desta tese é desenvolver estratégias robustas de filtragem distribuída para redes de sensores aplicadas a sistemas lineares em tempo discreto sujeitos a incertezas paramétricas. Especificamente, consideram-se dois tipos de incertezas: limitadas em norma e politópicas. Para atingir esse objetivo, outros problemas relacionados também são abordados, divididos em duas categorias. A primeira categoria de problemas refere-se à tarefa de estimativa de estado baseada em um único sensor. Dentro dessa categoria, considera-se o cenário em que os modelos são perfeitamente conhecidos, assim como os em que eles são sujeitos a cada um dos dois tipos de incerteza. São propostos filtros nominais e robustos para cada situação. A segunda categoria diz respeito às redes com múltiplos sensores, considerando os mesmos três cenários. Para cada um, são propostos estimadores centralizados e distribuídos. O algoritmo de consenso é utilizado para obter-se os filtros distribuídos, que aproximam suas versões centralizadas correspondentes. Os filtros propostos são baseados no célebre filtro de Kalman e apresentam uma estrutura recursiva semelhante e relativamente simples. O desempenho dos estimadores propostos é avaliado por meio de exemplos de aplicação, sendo também comparados com estratégias existentes na literatura relacionada.Biblioteca Digitais de Teses e Dissertações da USPTerra, Marco HenriqueRocha, Kaio Douglas Teofilo2022-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-17022023-123234/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-03-02T14:04:46Zoai:teses.usp.br:tde-17022023-123234Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-03-02T14:04:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Robust distributed filtering for sensor networks under parametric uncertainties
Filtragem distribuída robusta para redes de sensores sujeitas à incertezas paramétricas
title Robust distributed filtering for sensor networks under parametric uncertainties
spellingShingle Robust distributed filtering for sensor networks under parametric uncertainties
Rocha, Kaio Douglas Teofilo
Consenso
Consensus
Distributed filtering
Filtragem distribuída
Filtro de Kalman
Kalman filter
Redes de sensores
Sensor networks
Sistemas com incertezas
Uncertain systems
title_short Robust distributed filtering for sensor networks under parametric uncertainties
title_full Robust distributed filtering for sensor networks under parametric uncertainties
title_fullStr Robust distributed filtering for sensor networks under parametric uncertainties
title_full_unstemmed Robust distributed filtering for sensor networks under parametric uncertainties
title_sort Robust distributed filtering for sensor networks under parametric uncertainties
author Rocha, Kaio Douglas Teofilo
author_facet Rocha, Kaio Douglas Teofilo
author_role author
dc.contributor.none.fl_str_mv Terra, Marco Henrique
dc.contributor.author.fl_str_mv Rocha, Kaio Douglas Teofilo
dc.subject.por.fl_str_mv Consenso
Consensus
Distributed filtering
Filtragem distribuída
Filtro de Kalman
Kalman filter
Redes de sensores
Sensor networks
Sistemas com incertezas
Uncertain systems
topic Consenso
Consensus
Distributed filtering
Filtragem distribuída
Filtro de Kalman
Kalman filter
Redes de sensores
Sensor networks
Sistemas com incertezas
Uncertain systems
description In the past few years, we have witnessed the rapid popularization of networked cooperative multi-agent systems, which consistently move towards becoming ubiquitous in our society. As one of the most well-established examples of such systems, sensor networks have been applied to increasingly more complex systems, demanding even more robust, efficient, and reliable technologies. Distributed state estimation is the most fundamental task that one can accomplish with these networks. The main objective of this thesis is to develop robust distributed filtering strategies for sensor networks applied to linear discrete-time systems subject to model parametric uncertainties. Specifically, we deal with two types of uncertainties: norm-bounded and polytopic. To achieve this goal, we also address other related problems, divided into two categories. The first category of problems refers to the single-sensor state estimation task. Within this category, we consider the scenarios in which the underlying models are perfectly known and where they are subject to each of the two kinds of uncertainty. We propose nominal and robust filters for each situation. The second category concerns the networks with multiple sensors, considering the same three scenarios. For each one, we propose both centralized and distributed estimators. We use the average consensus algorithm to obtain the distributed filters, which approximate their centralized counterparts. The proposed filters are based on the celebrated Kalman filter and present a similar recursive and relatively simple structure. We evaluate the performance of the proposed estimators with application examples, in which we also compare them to existing strategies from the related literature.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18153/tde-17022023-123234/
url https://www.teses.usp.br/teses/disponiveis/18/18153/tde-17022023-123234/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257092170186752