Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli

Detalhes bibliográficos
Autor(a) principal: Kakimoto, Pâmela Aiako Hypólito Brito
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/46/46131/tde-10082023-115406/
Resumo: Non-alcoholic fatty liver disease (NAFLD) is a term comprising a spectrum of liver diseases in which lipids accumulate in the hepatocyte cytoplasm, ranging from simple steatosis to steatohepatitis, and fibrosis. Commonly found in obese individuals and type 2 diabetic patients, NAFLD prevalence is growing globally, and currently there are no approved treatments to prevent its progression. In the center of hepatic lipid metabolism are mitochondria, and the comprehension of their functional response to nutrient overload is vital to map disease development. Moreover, oxidant production is altered in obesity and stimulated by lipidic overload and the activation of pro-inflammatory pathways. Since cellular redox state is fundamental in the control of mitochondrial function and that the activity of many metabolic and signaling enzymes susceptible to oxidative modifications, understanding the action of oxidants is a critical step to uncover the pathophysiological mechanisms of diet-associated metabolic diseases . In this thesis, we propose to evaluate whether redox signaling participates in metabolic changes promoted by lipidic overload using in vivo and in vitro approaches. In the first part, we characterized, in C57BL/6NTac wild type mice and knockout for the enzyme inducible nitric oxide synthase (iNOS) submitted to 2, 4, and 8 weeks of high-fat feeding, that hepatic mitochondrial function is sustained over the time, independently of the diet, iNOS status, adiposity, and systemic insulin sensitivity. In the second part, we characterized, in hepatocyte cell lines, how ATP sources are affected by overload of palmitate, a saturated fatty acid. We identified that glycolytic ATP production is acutely activated by palmitate and modulated by oxidant production. Furthermore, mitochondrial ATP production is sustained under extensive oxidative stress and mitochondrial fragmentation. Using selective inhibitors, we found that the production of superoxide and/or hydrogen peroxide at the IQ site of respiratory mitochondrial complex I is associated with the metabolic rewiring promoted by palmitate. We demonstrate that increased glycolytic flux linked to mitochondrially-generated redox imbalance is an early bioenergetic result of palmitate overload and lipotoxicity. In conclusion, we identified, in two different steatosis models, that mitochondrial function can resist many insults and still sustain ATP production. Its notorious dysfunction in the fatty liver is probably not causative, but rather a downstream target of toxicity.
id USP_43f229e4934669b92def16d7df997eb1
oai_identifier_str oai:teses.usp.br:tde-10082023-115406
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuliBioenergética e sinalização redox em modelos de esteatose hepática: análise integra tiva de estímulos nutricionais, hormonais e inflamatórioÁcidos graxosEspécies reativas de oxigênioEsteatoseFatty acidsFígadoLiverMitochondriaMitocôndriaNitric oxideÓxido nítricoReactive oxygen speciesSteatosisNon-alcoholic fatty liver disease (NAFLD) is a term comprising a spectrum of liver diseases in which lipids accumulate in the hepatocyte cytoplasm, ranging from simple steatosis to steatohepatitis, and fibrosis. Commonly found in obese individuals and type 2 diabetic patients, NAFLD prevalence is growing globally, and currently there are no approved treatments to prevent its progression. In the center of hepatic lipid metabolism are mitochondria, and the comprehension of their functional response to nutrient overload is vital to map disease development. Moreover, oxidant production is altered in obesity and stimulated by lipidic overload and the activation of pro-inflammatory pathways. Since cellular redox state is fundamental in the control of mitochondrial function and that the activity of many metabolic and signaling enzymes susceptible to oxidative modifications, understanding the action of oxidants is a critical step to uncover the pathophysiological mechanisms of diet-associated metabolic diseases . In this thesis, we propose to evaluate whether redox signaling participates in metabolic changes promoted by lipidic overload using in vivo and in vitro approaches. In the first part, we characterized, in C57BL/6NTac wild type mice and knockout for the enzyme inducible nitric oxide synthase (iNOS) submitted to 2, 4, and 8 weeks of high-fat feeding, that hepatic mitochondrial function is sustained over the time, independently of the diet, iNOS status, adiposity, and systemic insulin sensitivity. In the second part, we characterized, in hepatocyte cell lines, how ATP sources are affected by overload of palmitate, a saturated fatty acid. We identified that glycolytic ATP production is acutely activated by palmitate and modulated by oxidant production. Furthermore, mitochondrial ATP production is sustained under extensive oxidative stress and mitochondrial fragmentation. Using selective inhibitors, we found that the production of superoxide and/or hydrogen peroxide at the IQ site of respiratory mitochondrial complex I is associated with the metabolic rewiring promoted by palmitate. We demonstrate that increased glycolytic flux linked to mitochondrially-generated redox imbalance is an early bioenergetic result of palmitate overload and lipotoxicity. In conclusion, we identified, in two different steatosis models, that mitochondrial function can resist many insults and still sustain ATP production. Its notorious dysfunction in the fatty liver is probably not causative, but rather a downstream target of toxicity.A doença hepática gordurosa não alcoólica (DHGNA) é um termo que compreende um espectro de doenças hepáticas nas quais os lipídios se acumulam no citoplasma dos hepatócitos, variando de esteatose simples à esteatohepatite e à fibrose. Comumente encontrada em indivíduos obesos e em pacientes diabéticos tipo 2, a prevalência de DHGNA está crescendo globalmente e, atualmente, não há tratamentos aprovados para prevenir sua progressão. No centro do metabolismo lipídico hepático estão as mitocôndrias, e a compreensão de sua resposta funcional à sobrecarga de nutrientes é vital para mapear o desenvolvimento da doença. Além disso, a produção de oxidantes é alterada na obesidade e estimulada pela sobrecarga lipídica e ativação de vias pró-inflamatórias. Sabendo que o estado redox celular é fundamental no controle da função mitocondrial e que a atividade de muitas enzimas metabólicas e sinalizadoras é u cetível a modificações oxidativas, entender o escopo da ação dos oxidantes é uma etapa crítica para acompanhar o mecanismo fisiopatológico de doenças associadas à dieta. esta tese, propomos avaliar se a sinal ização redox participa das alterações metabólicas promovidas pela sobrecarga lipídica usando abordagens in vivo e in vitro. Na primeira parte, caracterizamos que a função mitocondrial hepática é sustentada durante o tempo em camundongos C57BL/6NTac selvagem e nocaute para a enzima óxido nítrico sintase induzível (iNOS) submetidos a 2, 4 e 8 semanas de dieta rica em gordura, independentemente da dieta, do estado de iNOS, da adiposidade e da sensibilidade sistêmica à insulina. Na segunda parte, caracterizamos em linhagens de hepatócitos como as fontes de ATP são afetadas pela sobrecarga de palmitato, um ácido graxo saturado. Identificamos que a produção de A TP glicolítico é ativada de forma aguda pelo palmitato e modulada pela produção de oxidantes. Além disso, a produção de ATP mitocondrial é sustentada sob extenso estresse oxidativo e fragmentação mitocondrial. Usando inibidores seletivos, descobrimos que a produção de superóxido e / ou peróxido de hidrogênio no sítio lQ do complexo mitocondrial respiratório I está associada ao remodelamento metabólico promovido pelo palmitato. Demonstramos que o aumento do fluxo glicolítico ligado ao desequilíbrio redox gerado pela mitocôndria é um resultado lipotóxico agudo da sobrecarga de palmitato. Em conclusão, identificamos em dois modelos diferentes de esteatose que a função mitocondrial pode resistir a muitos insultos e ainda sustentar a produção de ATP. Sua notória disfunção no fígado gorduroso provavelmente não é causadora, mas sim um alvo a jusante da toxicidade.Biblioteca Digitais de Teses e Dissertações da USPKowaltowski, Alícia JulianaKakimoto, Pâmela Aiako Hypólito Brito2021-01-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46131/tde-10082023-115406/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-25T12:08:02Zoai:teses.usp.br:tde-10082023-115406Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-25T12:08:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
Bioenergética e sinalização redox em modelos de esteatose hepática: análise integra tiva de estímulos nutricionais, hormonais e inflamatório
title Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
spellingShingle Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
Kakimoto, Pâmela Aiako Hypólito Brito
Ácidos graxos
Espécies reativas de oxigênio
Esteatose
Fatty acids
Fígado
Liver
Mitochondria
Mitocôndria
Nitric oxide
Óxido nítrico
Reactive oxygen species
Steatosis
title_short Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
title_full Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
title_fullStr Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
title_full_unstemmed Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
title_sort Bioenergetic and redox signaling in hepatic steatosis models: Integrative analysis of nutritional, hormonal, and inflammatory stimuli
author Kakimoto, Pâmela Aiako Hypólito Brito
author_facet Kakimoto, Pâmela Aiako Hypólito Brito
author_role author
dc.contributor.none.fl_str_mv Kowaltowski, Alícia Juliana
dc.contributor.author.fl_str_mv Kakimoto, Pâmela Aiako Hypólito Brito
dc.subject.por.fl_str_mv Ácidos graxos
Espécies reativas de oxigênio
Esteatose
Fatty acids
Fígado
Liver
Mitochondria
Mitocôndria
Nitric oxide
Óxido nítrico
Reactive oxygen species
Steatosis
topic Ácidos graxos
Espécies reativas de oxigênio
Esteatose
Fatty acids
Fígado
Liver
Mitochondria
Mitocôndria
Nitric oxide
Óxido nítrico
Reactive oxygen species
Steatosis
description Non-alcoholic fatty liver disease (NAFLD) is a term comprising a spectrum of liver diseases in which lipids accumulate in the hepatocyte cytoplasm, ranging from simple steatosis to steatohepatitis, and fibrosis. Commonly found in obese individuals and type 2 diabetic patients, NAFLD prevalence is growing globally, and currently there are no approved treatments to prevent its progression. In the center of hepatic lipid metabolism are mitochondria, and the comprehension of their functional response to nutrient overload is vital to map disease development. Moreover, oxidant production is altered in obesity and stimulated by lipidic overload and the activation of pro-inflammatory pathways. Since cellular redox state is fundamental in the control of mitochondrial function and that the activity of many metabolic and signaling enzymes susceptible to oxidative modifications, understanding the action of oxidants is a critical step to uncover the pathophysiological mechanisms of diet-associated metabolic diseases . In this thesis, we propose to evaluate whether redox signaling participates in metabolic changes promoted by lipidic overload using in vivo and in vitro approaches. In the first part, we characterized, in C57BL/6NTac wild type mice and knockout for the enzyme inducible nitric oxide synthase (iNOS) submitted to 2, 4, and 8 weeks of high-fat feeding, that hepatic mitochondrial function is sustained over the time, independently of the diet, iNOS status, adiposity, and systemic insulin sensitivity. In the second part, we characterized, in hepatocyte cell lines, how ATP sources are affected by overload of palmitate, a saturated fatty acid. We identified that glycolytic ATP production is acutely activated by palmitate and modulated by oxidant production. Furthermore, mitochondrial ATP production is sustained under extensive oxidative stress and mitochondrial fragmentation. Using selective inhibitors, we found that the production of superoxide and/or hydrogen peroxide at the IQ site of respiratory mitochondrial complex I is associated with the metabolic rewiring promoted by palmitate. We demonstrate that increased glycolytic flux linked to mitochondrially-generated redox imbalance is an early bioenergetic result of palmitate overload and lipotoxicity. In conclusion, we identified, in two different steatosis models, that mitochondrial function can resist many insults and still sustain ATP production. Its notorious dysfunction in the fatty liver is probably not causative, but rather a downstream target of toxicity.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/46/46131/tde-10082023-115406/
url https://www.teses.usp.br/teses/disponiveis/46/46131/tde-10082023-115406/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256919339696128