Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3152/tde-29052019-085809/ |
Resumo: | Este trabalho investigou o uso de tomografia por impedância elétrica (TIE) na discriminação de fases em sistemas bifásicos água-ar. A TIE é uma técnica não-intrusiva em que são estimados parâmetros de condutividade elétrica de um sistema de interesse a partir de correntes elétricas impostas e potenciais elétricos medidos na fronteira desse meio. Esta técnica se traduz em um problema desafiador, por ser inverso, não-linear e mal-posto. Adicionalmente, na aplicação em análise, a dinâmica do sistema é rápida a ponto de influir nas estimativas procuradas. Foi sistematizada uma abordagem para integrar informações de medições a de outras fontes, como um regularizador generalizado de Tikhonov (filtro gaussiano), parametrização de estado e modelos de evolução, construindo um modelo adaptativo de estimação. Tal combinação de métodos é inédita na literatura. Parametrização do estado (vetor de condutividades do sistema de interesse, após discretização espacial) em condutividade logarítmica foi implementada para assegurar a obtenção de valores condizentes com a física, i.e., as estimativas em condutividade são mantidas estritamente positivas, com benefícios adicionais de aumento da região de convergência monotônica e melhoria na uniformidade da taxa de convergência das estimativas. O estudo de um sistema numérico evidenciou que a parametrização do estado permitiu o aumento do fator de sub-relaxação no método de Gauss-Newton, de 4~ para 15~, o que torna o algoritmo mais rápido. Dois modelos de evolução para escoamentos foram propostos e, comparativamente com o modelo de passeio aleatório, proporcionaram convergência mais rápida, melhor distinção das fases e melhoria do grau de observabilidade do problema de TIE. Esses modelos descrevem uma velocidade representativa para o escoamento, avaliada experimentalmente em 0; 47 m_s. Ensaios experimentais estáticos sugerem que os métodos aplicados diferenciam a presença das fases em um duto. No caso em que a dinâmica é relevante (passagem de bolhas ao longo do duto), o algoritmo desenvolvido permite o devido acompanhamento de não homogeneidades. Portanto, os resultados dessa pesquisa têm o potencial de apoiar a estimação de vazões bifásicas em trabalhos futuros, uma vez que a avaliação da fração de ocupação das fases é um passo crucial para o desenvolvimento de um medidor real de vazão multifásica. |
id |
USP_440f3b424c4deb33d8b1b84e5a7009c0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-29052019-085809 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos.Dynamic estimation in electrical impedance tomography with adaptive models.Estimação não linearFiltros de KalmanInverse problemsKalman filterNonlinear estimationProblemas inversosTomografiaTomographyEste trabalho investigou o uso de tomografia por impedância elétrica (TIE) na discriminação de fases em sistemas bifásicos água-ar. A TIE é uma técnica não-intrusiva em que são estimados parâmetros de condutividade elétrica de um sistema de interesse a partir de correntes elétricas impostas e potenciais elétricos medidos na fronteira desse meio. Esta técnica se traduz em um problema desafiador, por ser inverso, não-linear e mal-posto. Adicionalmente, na aplicação em análise, a dinâmica do sistema é rápida a ponto de influir nas estimativas procuradas. Foi sistematizada uma abordagem para integrar informações de medições a de outras fontes, como um regularizador generalizado de Tikhonov (filtro gaussiano), parametrização de estado e modelos de evolução, construindo um modelo adaptativo de estimação. Tal combinação de métodos é inédita na literatura. Parametrização do estado (vetor de condutividades do sistema de interesse, após discretização espacial) em condutividade logarítmica foi implementada para assegurar a obtenção de valores condizentes com a física, i.e., as estimativas em condutividade são mantidas estritamente positivas, com benefícios adicionais de aumento da região de convergência monotônica e melhoria na uniformidade da taxa de convergência das estimativas. O estudo de um sistema numérico evidenciou que a parametrização do estado permitiu o aumento do fator de sub-relaxação no método de Gauss-Newton, de 4~ para 15~, o que torna o algoritmo mais rápido. Dois modelos de evolução para escoamentos foram propostos e, comparativamente com o modelo de passeio aleatório, proporcionaram convergência mais rápida, melhor distinção das fases e melhoria do grau de observabilidade do problema de TIE. Esses modelos descrevem uma velocidade representativa para o escoamento, avaliada experimentalmente em 0; 47 m_s. Ensaios experimentais estáticos sugerem que os métodos aplicados diferenciam a presença das fases em um duto. No caso em que a dinâmica é relevante (passagem de bolhas ao longo do duto), o algoritmo desenvolvido permite o devido acompanhamento de não homogeneidades. Portanto, os resultados dessa pesquisa têm o potencial de apoiar a estimação de vazões bifásicas em trabalhos futuros, uma vez que a avaliação da fração de ocupação das fases é um passo crucial para o desenvolvimento de um medidor real de vazão multifásica.This work investigated the use of electrical impedance tomography (EIT) in phase discrimination in two-phase air-water systems. EIT is a non-intrusive technique in which electric currents are imposed and electric potentials are measured at the boundary of a system. This method is mathematically challenging, as it is non-linear, inverse, and ill-posed. Also, for the application at hand, the system dynamics is fast enough to influence the sought estimates. A systematic approach was created to combine information from measurements and other sources, including a generalized Tikhonov regularization term (Gaussian filter), state parametrization and evolution models. This adaptive estimation approach is a contribution to the literature. State parametrization (vector of conductivities of the system of interest after spatial discretization) in logarithmic conductivity was implemented to ensure that the estimates remain in physical bounds, i.e., only positive values are achieved. Additional benefits are the increase of the region that leads to monotone convergence and a more uniform convergence rate of the estimates. The comparative analysis of a numerical system showed that state parametrization allowed an increase for the under-relaxation factor in the Gauss-Newton method, from 4% to 15%, increasing the algorithm\'s speed. Two evolution models for flows were proposed and, when compared to the random walk model, provided faster convergence, better phase distinction and an improved degree of observability for the EIT problem. These models describe a representative velocity for the flow, estimated experimentally as 0:47 m/s. Experimental tests of static setups suggest that the applied methods are able to differentiate the phases in a duct. In the case where the dynamics is relevant (flow of bubbles along the duct), the algorithm developed allows for monitoring inhomogeneities. Therefore, the results of this thesis are able to support the estimation of two-phase flow rates in future work, given that evaluating void fraction is a crucial step for an online multiphase flow rate meter.Biblioteca Digitais de Teses e Dissertações da USPLima, Raúl GonzálezTrigo, Flavio CelsoPellegrini, Sergio de Paula2019-03-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3152/tde-29052019-085809/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:51:10Zoai:teses.usp.br:tde-29052019-085809Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:51:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. Dynamic estimation in electrical impedance tomography with adaptive models. |
title |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. |
spellingShingle |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. Pellegrini, Sergio de Paula Estimação não linear Filtros de Kalman Inverse problems Kalman filter Nonlinear estimation Problemas inversos Tomografia Tomography |
title_short |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. |
title_full |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. |
title_fullStr |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. |
title_full_unstemmed |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. |
title_sort |
Estimação dinâmica em tomografia por impedância elétrica com modelos adaptativos. |
author |
Pellegrini, Sergio de Paula |
author_facet |
Pellegrini, Sergio de Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lima, Raúl González Trigo, Flavio Celso |
dc.contributor.author.fl_str_mv |
Pellegrini, Sergio de Paula |
dc.subject.por.fl_str_mv |
Estimação não linear Filtros de Kalman Inverse problems Kalman filter Nonlinear estimation Problemas inversos Tomografia Tomography |
topic |
Estimação não linear Filtros de Kalman Inverse problems Kalman filter Nonlinear estimation Problemas inversos Tomografia Tomography |
description |
Este trabalho investigou o uso de tomografia por impedância elétrica (TIE) na discriminação de fases em sistemas bifásicos água-ar. A TIE é uma técnica não-intrusiva em que são estimados parâmetros de condutividade elétrica de um sistema de interesse a partir de correntes elétricas impostas e potenciais elétricos medidos na fronteira desse meio. Esta técnica se traduz em um problema desafiador, por ser inverso, não-linear e mal-posto. Adicionalmente, na aplicação em análise, a dinâmica do sistema é rápida a ponto de influir nas estimativas procuradas. Foi sistematizada uma abordagem para integrar informações de medições a de outras fontes, como um regularizador generalizado de Tikhonov (filtro gaussiano), parametrização de estado e modelos de evolução, construindo um modelo adaptativo de estimação. Tal combinação de métodos é inédita na literatura. Parametrização do estado (vetor de condutividades do sistema de interesse, após discretização espacial) em condutividade logarítmica foi implementada para assegurar a obtenção de valores condizentes com a física, i.e., as estimativas em condutividade são mantidas estritamente positivas, com benefícios adicionais de aumento da região de convergência monotônica e melhoria na uniformidade da taxa de convergência das estimativas. O estudo de um sistema numérico evidenciou que a parametrização do estado permitiu o aumento do fator de sub-relaxação no método de Gauss-Newton, de 4~ para 15~, o que torna o algoritmo mais rápido. Dois modelos de evolução para escoamentos foram propostos e, comparativamente com o modelo de passeio aleatório, proporcionaram convergência mais rápida, melhor distinção das fases e melhoria do grau de observabilidade do problema de TIE. Esses modelos descrevem uma velocidade representativa para o escoamento, avaliada experimentalmente em 0; 47 m_s. Ensaios experimentais estáticos sugerem que os métodos aplicados diferenciam a presença das fases em um duto. No caso em que a dinâmica é relevante (passagem de bolhas ao longo do duto), o algoritmo desenvolvido permite o devido acompanhamento de não homogeneidades. Portanto, os resultados dessa pesquisa têm o potencial de apoiar a estimação de vazões bifásicas em trabalhos futuros, uma vez que a avaliação da fração de ocupação das fases é um passo crucial para o desenvolvimento de um medidor real de vazão multifásica. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-29052019-085809/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-29052019-085809/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257466060931072 |