Análise multi-escala de formas bidimensionais

Detalhes bibliográficos
Autor(a) principal: Cesar Junior, Roberto Marcondes
Data de Publicação: 1997
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-163634/
Resumo: Esta tese introduz um conjunto de novos métodos para análise de formas bidimensionais (2D) dentro do contexto da resolução de problemas de visão computacional e analise de formas neurais ou neuromorfometria. Mais especificamente, este trabalho apresenta o desenvolvimento de conceitos e algoritmos para a representação e analise multi-escala de contornos de objetos em imagens digitais. Assim, o contorno dos objetos e representado por um sinal que assume valores complexos e que pode ser subseqüentemente analisado por uma transformada multi-escala. Nesse sentido, os desenvolvimentos apresentados nesta tese valeram-se matematicamente de ferramentas desenvolvidas na área de processamento de sinais e de imagens, bem como em outras áreas da matemática como a geometria diferencial. Técnicas de analise de contornos através da curvatura multi-escala e das transformadas de Gabor e em wavelets são introduzidas, incluindo algoritmos específicos para a detecção de vértices, caracterização de escalas naturais, analise fractal de curvas deterministicamente auto-similares e extração de vetores de características associadas a diferentes aspectos de formas como complexidade e retangularidade. Particularmente em relação aos métodos de analise multi-escala de curvatura, esta tese apresenta um novo esquema de estimação digital de curvatura baseado em propriedades da transformada de Fourier e novas abordagens para a prevenção a contração dos contornos devido a filtragem gaussiana. Esse novo esquema de estimação de curvatura foi testado exaustivamente, incluindo uma avaliação da precisão do método através de uma analise de erro entre valores da curvatura analítica e a estimada baseada em curvas B-splines. O novo esquema apresentou resultados encorajadores em todas as avaliações, corroborando sua eficiência. Em relação a parte especifica de analise de formas neurais, as contribuições desta tese residem em duas áreas. Inicialmente, novas medidas de formas, correspondentes as energias multi-escala, foram introduzidas para a caracterização e classificação automática de neurônios baseada na complexidade das formas; experimentos de classificação estatística de celulas ganglionares (gato) são relatados. Finalmente, descreve-se uma nova técnica para a criação semi-automática de dendrogramas, os quais são estruturas de dados abstratas que descrevem células neurais. Todas as técnicas foram extensivamente testadas em imagens reais e sintéticas e os respectivos resultados, que corroboram a eficiência dos algoritmos, são incluídos ao longo da tese
id USP_4432c977e087f023d8b86467c5757d2d
oai_identifier_str oai:teses.usp.br:tde-27112014-163634
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise multi-escala de formas bidimensionaisNot availableAnálise de formasNeurôniosNot availableVisão cibernéticaWaveletsEsta tese introduz um conjunto de novos métodos para análise de formas bidimensionais (2D) dentro do contexto da resolução de problemas de visão computacional e analise de formas neurais ou neuromorfometria. Mais especificamente, este trabalho apresenta o desenvolvimento de conceitos e algoritmos para a representação e analise multi-escala de contornos de objetos em imagens digitais. Assim, o contorno dos objetos e representado por um sinal que assume valores complexos e que pode ser subseqüentemente analisado por uma transformada multi-escala. Nesse sentido, os desenvolvimentos apresentados nesta tese valeram-se matematicamente de ferramentas desenvolvidas na área de processamento de sinais e de imagens, bem como em outras áreas da matemática como a geometria diferencial. Técnicas de analise de contornos através da curvatura multi-escala e das transformadas de Gabor e em wavelets são introduzidas, incluindo algoritmos específicos para a detecção de vértices, caracterização de escalas naturais, analise fractal de curvas deterministicamente auto-similares e extração de vetores de características associadas a diferentes aspectos de formas como complexidade e retangularidade. Particularmente em relação aos métodos de analise multi-escala de curvatura, esta tese apresenta um novo esquema de estimação digital de curvatura baseado em propriedades da transformada de Fourier e novas abordagens para a prevenção a contração dos contornos devido a filtragem gaussiana. Esse novo esquema de estimação de curvatura foi testado exaustivamente, incluindo uma avaliação da precisão do método através de uma analise de erro entre valores da curvatura analítica e a estimada baseada em curvas B-splines. O novo esquema apresentou resultados encorajadores em todas as avaliações, corroborando sua eficiência. Em relação a parte especifica de analise de formas neurais, as contribuições desta tese residem em duas áreas. Inicialmente, novas medidas de formas, correspondentes as energias multi-escala, foram introduzidas para a caracterização e classificação automática de neurônios baseada na complexidade das formas; experimentos de classificação estatística de celulas ganglionares (gato) são relatados. Finalmente, descreve-se uma nova técnica para a criação semi-automática de dendrogramas, os quais são estruturas de dados abstratas que descrevem células neurais. Todas as técnicas foram extensivamente testadas em imagens reais e sintéticas e os respectivos resultados, que corroboram a eficiência dos algoritmos, são incluídos ao longo da teseThis thesis introduces a set of new methods for two-dimensional shape analysis for computer vision and neural shape analysis applications. More specifically, this work develops concepts and algorithms for multiscale contour representation and analysis of objects present in digital images. Therefore the object contour is represented by a complex-valued signal that can be subsequently analyzed by a multiscale transform. Different mathematical tools from signal and image processing fields, as well as differential geometry, underlie the developments in this work. Techniques for contour analysis through multi scale curvature and the Gabor and wavelet transforms are introduced. The new techniques include specific algorithms for comer detection, natural scales characterization, fractal analysis of self-similar curves and feature vector extraction associated with different shape aspects such as complexity and rectangularity. As far as the multiscale curvature analysis methods are concerned, this thesis presents a new framework for digital curvature estimation based on Fourier transform properties and new approaches for contour shrinking prevention due to Gaussian filtering. The new framework of curvature estimation has been extensively evaluated, including precision assessment of the error of the estimation based on B-spline curves. The new framework has performed successfully in all assessment experiments, which corroborates its efficiency. As far as the neural shape analysis is concerned, the contributions of this thesis are twofold. On one hand, some new shape measures, corresponding to the multiscale energies, have been devised for characterization and classification of neural cells based on shape complexity; statistical pattern recognition experiments using retinal ganglion cells (cat) are reported. On the other hand, a new technique for semi-automated dendrogram generation, i.e. abstract data structures that represent different neural cell features, is described. All the techniques have been extensively assessed using both real and computer-generated images and some of the respective results, which corroborate the robustness of the algorithms, are included throughout the thesisBiblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraCesar Junior, Roberto Marcondes1997-11-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-163634/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-27112014-163634Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise multi-escala de formas bidimensionais
Not available
title Análise multi-escala de formas bidimensionais
spellingShingle Análise multi-escala de formas bidimensionais
Cesar Junior, Roberto Marcondes
Análise de formas
Neurônios
Not available
Visão cibernética
Wavelets
title_short Análise multi-escala de formas bidimensionais
title_full Análise multi-escala de formas bidimensionais
title_fullStr Análise multi-escala de formas bidimensionais
title_full_unstemmed Análise multi-escala de formas bidimensionais
title_sort Análise multi-escala de formas bidimensionais
author Cesar Junior, Roberto Marcondes
author_facet Cesar Junior, Roberto Marcondes
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
dc.contributor.author.fl_str_mv Cesar Junior, Roberto Marcondes
dc.subject.por.fl_str_mv Análise de formas
Neurônios
Not available
Visão cibernética
Wavelets
topic Análise de formas
Neurônios
Not available
Visão cibernética
Wavelets
description Esta tese introduz um conjunto de novos métodos para análise de formas bidimensionais (2D) dentro do contexto da resolução de problemas de visão computacional e analise de formas neurais ou neuromorfometria. Mais especificamente, este trabalho apresenta o desenvolvimento de conceitos e algoritmos para a representação e analise multi-escala de contornos de objetos em imagens digitais. Assim, o contorno dos objetos e representado por um sinal que assume valores complexos e que pode ser subseqüentemente analisado por uma transformada multi-escala. Nesse sentido, os desenvolvimentos apresentados nesta tese valeram-se matematicamente de ferramentas desenvolvidas na área de processamento de sinais e de imagens, bem como em outras áreas da matemática como a geometria diferencial. Técnicas de analise de contornos através da curvatura multi-escala e das transformadas de Gabor e em wavelets são introduzidas, incluindo algoritmos específicos para a detecção de vértices, caracterização de escalas naturais, analise fractal de curvas deterministicamente auto-similares e extração de vetores de características associadas a diferentes aspectos de formas como complexidade e retangularidade. Particularmente em relação aos métodos de analise multi-escala de curvatura, esta tese apresenta um novo esquema de estimação digital de curvatura baseado em propriedades da transformada de Fourier e novas abordagens para a prevenção a contração dos contornos devido a filtragem gaussiana. Esse novo esquema de estimação de curvatura foi testado exaustivamente, incluindo uma avaliação da precisão do método através de uma analise de erro entre valores da curvatura analítica e a estimada baseada em curvas B-splines. O novo esquema apresentou resultados encorajadores em todas as avaliações, corroborando sua eficiência. Em relação a parte especifica de analise de formas neurais, as contribuições desta tese residem em duas áreas. Inicialmente, novas medidas de formas, correspondentes as energias multi-escala, foram introduzidas para a caracterização e classificação automática de neurônios baseada na complexidade das formas; experimentos de classificação estatística de celulas ganglionares (gato) são relatados. Finalmente, descreve-se uma nova técnica para a criação semi-automática de dendrogramas, os quais são estruturas de dados abstratas que descrevem células neurais. Todas as técnicas foram extensivamente testadas em imagens reais e sintéticas e os respectivos resultados, que corroboram a eficiência dos algoritmos, são incluídos ao longo da tese
publishDate 1997
dc.date.none.fl_str_mv 1997-11-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-163634/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-163634/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257420458360832