Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07052008-102458/ |
Resumo: | Sistemas PACS (Picture Archieving and Communication Systems) têm sido desenvolvidos para armazenar de maneira integrada tanto os dados textuais e temporais dos pacientes quanto as imagens dos exames médicos a que eles se submetem para ampliar o uso das imagens no auxílio ao diagnóstico. Outra ferramenta valiosa para o auxílio ao diagnóstico médico são os sistemas CAD (Computer-Aided Diagnosis), para os quais pesquisas recentes mostram que o seu uso melhora significativamente a performance dos radiologistas em detectar corretamente anomalias. Dentro deste contexto, muitos trabalhos têm buscado métodos que possam reduzir o problema do \"gap semântico\", que refere-se ao que é perdido pela descrição sucinta da imagem e o que o usuário espera recuperar/reconhecer utilizando tal descrição. A grande maioria dos sistemas CBIR (do inglês Content-based image retrieval ) utiliza características primárias (baixo nível) para descrever elementos relevantes da imagem e proporcionar recuperação baseada em conteúdo. É necessário \"fundir\" múltiplos vetores com uma caracterí?stica em um vetor composto de características que possui baixa dimensionalidade e que ainda preserve, dentro do possível, as informações necessárias para a recuperação de imagens. O objetivo deste trabalho é propor novos extratores de características, baseados nos subespaços de imagens médicas gerados por transformadas wavelets. Estas características são armazenadas em vetores de características, os quais representam numericamente as imagens e permitindo assim sua busca por semelhança utilizando o conteúdo das próprias imagens. Esses vetores serão usados em um sistema de mineração de imagens em desenvolvimento no GBdI-ICMC-USP, o StARMiner, permitindo encontrar padrões pertencentes às imagens que as levem a ser classificadas em categorias |
id |
USP_448a02036d065ecdfc7c62e642fed3b8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07052008-102458 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnósticoFeature extraction of medical images through wavelets aiming at image mining and diagnosis supportContent-based retrievalFeatures vectorImagens médicasMedical imagesMineração de imagensRecuperação por conteúdoVetor de característicasWaveletsWaveletsSistemas PACS (Picture Archieving and Communication Systems) têm sido desenvolvidos para armazenar de maneira integrada tanto os dados textuais e temporais dos pacientes quanto as imagens dos exames médicos a que eles se submetem para ampliar o uso das imagens no auxílio ao diagnóstico. Outra ferramenta valiosa para o auxílio ao diagnóstico médico são os sistemas CAD (Computer-Aided Diagnosis), para os quais pesquisas recentes mostram que o seu uso melhora significativamente a performance dos radiologistas em detectar corretamente anomalias. Dentro deste contexto, muitos trabalhos têm buscado métodos que possam reduzir o problema do \"gap semântico\", que refere-se ao que é perdido pela descrição sucinta da imagem e o que o usuário espera recuperar/reconhecer utilizando tal descrição. A grande maioria dos sistemas CBIR (do inglês Content-based image retrieval ) utiliza características primárias (baixo nível) para descrever elementos relevantes da imagem e proporcionar recuperação baseada em conteúdo. É necessário \"fundir\" múltiplos vetores com uma caracterí?stica em um vetor composto de características que possui baixa dimensionalidade e que ainda preserve, dentro do possível, as informações necessárias para a recuperação de imagens. O objetivo deste trabalho é propor novos extratores de características, baseados nos subespaços de imagens médicas gerados por transformadas wavelets. Estas características são armazenadas em vetores de características, os quais representam numericamente as imagens e permitindo assim sua busca por semelhança utilizando o conteúdo das próprias imagens. Esses vetores serão usados em um sistema de mineração de imagens em desenvolvimento no GBdI-ICMC-USP, o StARMiner, permitindo encontrar padrões pertencentes às imagens que as levem a ser classificadas em categoriasPicture Archiving and Communication Systems (PACS) aim at storing all the patients data, including their images, time series and textual description, allowing fast and effective transfer of information among devices and workstations. Therefore, PACS can be a powerful tool on improving the decision making during a diagnosing process. The CAD (Computer-Aided Diagnosis) systems have been recently employed to improve the diagnosis confidence, and recent research shows that they can effectively raise the radiologists performance on detecting anomalies on images. Content-based image retrieval (CBIR) techniques are essential to support CAD systems, and can significantly improve the PACS applicability. CBIR works on raw level features extracted from the images to describe the most meaningful characteristics of the images following a specific criterium. Usually, it is necessary to put together several features to compose a feature vector to describe an image more precisely. Therefore, the dimensionality of the feature vector is frequently large and many features can be correlated to each other. The objective of this Master Dissertation is to build new image features, based on wavelet-generated subspaces. The features form the feature vector, which succinctly represent the images and are used to process similarity queries. The feature vectors are analyzed by the StARMiner system, under development in the GbdI-ICMC-USP, in order to find the most meaningful features to represent the images as well as to find patterns in the images that allow them to be classified into categories. The project developed was evaluated with three different image sets and the results are promisingBiblioteca Digitais de Teses e Dissertações da USPTraina, Agma Juci MachadoSilva, Carolina Yukari Veludo Watanabe da2007-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-07052008-102458/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-07052008-102458Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico Feature extraction of medical images through wavelets aiming at image mining and diagnosis support |
title |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico |
spellingShingle |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico Silva, Carolina Yukari Veludo Watanabe da Content-based retrieval Features vector Imagens médicas Medical images Mineração de imagens Recuperação por conteúdo Vetor de características Wavelets Wavelets |
title_short |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico |
title_full |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico |
title_fullStr |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico |
title_full_unstemmed |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico |
title_sort |
Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico |
author |
Silva, Carolina Yukari Veludo Watanabe da |
author_facet |
Silva, Carolina Yukari Veludo Watanabe da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Traina, Agma Juci Machado |
dc.contributor.author.fl_str_mv |
Silva, Carolina Yukari Veludo Watanabe da |
dc.subject.por.fl_str_mv |
Content-based retrieval Features vector Imagens médicas Medical images Mineração de imagens Recuperação por conteúdo Vetor de características Wavelets Wavelets |
topic |
Content-based retrieval Features vector Imagens médicas Medical images Mineração de imagens Recuperação por conteúdo Vetor de características Wavelets Wavelets |
description |
Sistemas PACS (Picture Archieving and Communication Systems) têm sido desenvolvidos para armazenar de maneira integrada tanto os dados textuais e temporais dos pacientes quanto as imagens dos exames médicos a que eles se submetem para ampliar o uso das imagens no auxílio ao diagnóstico. Outra ferramenta valiosa para o auxílio ao diagnóstico médico são os sistemas CAD (Computer-Aided Diagnosis), para os quais pesquisas recentes mostram que o seu uso melhora significativamente a performance dos radiologistas em detectar corretamente anomalias. Dentro deste contexto, muitos trabalhos têm buscado métodos que possam reduzir o problema do \"gap semântico\", que refere-se ao que é perdido pela descrição sucinta da imagem e o que o usuário espera recuperar/reconhecer utilizando tal descrição. A grande maioria dos sistemas CBIR (do inglês Content-based image retrieval ) utiliza características primárias (baixo nível) para descrever elementos relevantes da imagem e proporcionar recuperação baseada em conteúdo. É necessário \"fundir\" múltiplos vetores com uma caracterí?stica em um vetor composto de características que possui baixa dimensionalidade e que ainda preserve, dentro do possível, as informações necessárias para a recuperação de imagens. O objetivo deste trabalho é propor novos extratores de características, baseados nos subespaços de imagens médicas gerados por transformadas wavelets. Estas características são armazenadas em vetores de características, os quais representam numericamente as imagens e permitindo assim sua busca por semelhança utilizando o conteúdo das próprias imagens. Esses vetores serão usados em um sistema de mineração de imagens em desenvolvimento no GBdI-ICMC-USP, o StARMiner, permitindo encontrar padrões pertencentes às imagens que as levem a ser classificadas em categorias |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07052008-102458/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07052008-102458/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256781631258624 |