NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/ |
Resumo: | Floating oshore structures are maintained in the desired position by mooring lines attached to the seabed of the location. These systems are among the main components that guarantee not only the safety of the crew but also the various operations carried out on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines of platforms with dierent levels of draft (load) based on the measurements of the platform motion provided by the Dierential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system was developed. NeMo consists of two modules: a motion prediction module comprising of a feed forward neural network (Multilayer Perceptron MLP), which uses previous data from platform motions to predict future motion, and a multi-class classifier module, which uses the dierence between predicted motion and measured actual motion as inputs to indicate whether or not there has been a failure, for various groups of mooring lines. The system was trained and tested using simulated data from a time- domain platform motion simulator. Results of the implemented NeMo system showed it is able to detect the occurrence of failure in the mooring lines, with errors between the forecast and the measured movements when there was a line breakage. These errors are such that the developed multi-class classifier had a 99% accuracy prediction rate when classifying the platform motions. |
id |
USP_467aeeb1aca365c9b098037c472e947b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27042023-080040 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.NEMO: um estimador de movimento neural para detecção de falha de linha de amarração de plataformas offshore.Aprendizado computacionalClassificaçãoClassificationEstruturas offshoreMachine learningMooring lines breakageNeural networksO?shore platformsRedes NeuraisRompimentos de cabos de ancoragemFloating oshore structures are maintained in the desired position by mooring lines attached to the seabed of the location. These systems are among the main components that guarantee not only the safety of the crew but also the various operations carried out on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines of platforms with dierent levels of draft (load) based on the measurements of the platform motion provided by the Dierential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system was developed. NeMo consists of two modules: a motion prediction module comprising of a feed forward neural network (Multilayer Perceptron MLP), which uses previous data from platform motions to predict future motion, and a multi-class classifier module, which uses the dierence between predicted motion and measured actual motion as inputs to indicate whether or not there has been a failure, for various groups of mooring lines. The system was trained and tested using simulated data from a time- domain platform motion simulator. Results of the implemented NeMo system showed it is able to detect the occurrence of failure in the mooring lines, with errors between the forecast and the measured movements when there was a line breakage. These errors are such that the developed multi-class classifier had a 99% accuracy prediction rate when classifying the platform motions.Estruturas flutuantes offshore são fixadas no local desejado por meio de cabos de amarração ancorados no fundo do mar. Esses sistemas estão entre os principais componentes que garantem não só a segurança da tripulação, mas também das diversas operações realizadas nas plataformas. Nesta tese, o objetivo é detectar a ruptura dos cabos de amarração de plataformas, com diferentes níveis de calado (carga), com base nas medidas do movimento da plataforma fornecidas pelos sensores do Sistema de Posicionamento Global Diferencial (DGPS) e da Unidade de Medição Inercial (IMU). Para isso, foi desenvolvido o sistema Neural Motion Estimator (NeMo). O sistema é composto por dois módulos: um módulo de previsão de movimento composto por uma rede feed forward (Multilayer Perceptron MLP), que usa dados prévios dos movimentos da plataforma para prever o movimento futuro, e um módulo classificador, que usa a diferença entre o movimento previsto e o movimento real medido como entradas para um classificador multiclasse que indica se houve ou não uma falha, para vários grupos de cabos de ancoragem. Os resultados do sistema NeMo mostram que ele é capaz de detectar a ocorrência de falhas nos cabos de ancoragem, mostrando erros entre os movimentos preditos e medidos quando houve um rompimento de cabo. Esses erros são tais que o classificador multiclasse desenvolvido teve uma acurácia de previsão de 99% ao classificar o movimento da plataforma.Biblioteca Digitais de Teses e Dissertações da USPCosta, Anna Helena RealiTannuri, Eduardo AounSa\'ad, Amir Muhammed2023-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:09Zoai:teses.usp.br:tde-27042023-080040Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. NEMO: um estimador de movimento neural para detecção de falha de linha de amarração de plataformas offshore. |
title |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. |
spellingShingle |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. Sa\'ad, Amir Muhammed Aprendizado computacional Classificação Classification Estruturas offshore Machine learning Mooring lines breakage Neural networks O?shore platforms Redes Neurais Rompimentos de cabos de ancoragem |
title_short |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. |
title_full |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. |
title_fullStr |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. |
title_full_unstemmed |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. |
title_sort |
NEMO: a neural motion estimator for mooring line failure detection of offshore platforms. |
author |
Sa\'ad, Amir Muhammed |
author_facet |
Sa\'ad, Amir Muhammed |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Anna Helena Reali Tannuri, Eduardo Aoun |
dc.contributor.author.fl_str_mv |
Sa\'ad, Amir Muhammed |
dc.subject.por.fl_str_mv |
Aprendizado computacional Classificação Classification Estruturas offshore Machine learning Mooring lines breakage Neural networks O?shore platforms Redes Neurais Rompimentos de cabos de ancoragem |
topic |
Aprendizado computacional Classificação Classification Estruturas offshore Machine learning Mooring lines breakage Neural networks O?shore platforms Redes Neurais Rompimentos de cabos de ancoragem |
description |
Floating oshore structures are maintained in the desired position by mooring lines attached to the seabed of the location. These systems are among the main components that guarantee not only the safety of the crew but also the various operations carried out on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines of platforms with dierent levels of draft (load) based on the measurements of the platform motion provided by the Dierential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system was developed. NeMo consists of two modules: a motion prediction module comprising of a feed forward neural network (Multilayer Perceptron MLP), which uses previous data from platform motions to predict future motion, and a multi-class classifier module, which uses the dierence between predicted motion and measured actual motion as inputs to indicate whether or not there has been a failure, for various groups of mooring lines. The system was trained and tested using simulated data from a time- domain platform motion simulator. Results of the implemented NeMo system showed it is able to detect the occurrence of failure in the mooring lines, with errors between the forecast and the measured movements when there was a line breakage. These errors are such that the developed multi-class classifier had a 99% accuracy prediction rate when classifying the platform motions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/ |
url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256538851311616 |