NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.

Detalhes bibliográficos
Autor(a) principal: Sa\'ad, Amir Muhammed
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/
Resumo: Floating oshore structures are maintained in the desired position by mooring lines attached to the seabed of the location. These systems are among the main components that guarantee not only the safety of the crew but also the various operations carried out on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines of platforms with dierent levels of draft (load) based on the measurements of the platform motion provided by the Dierential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system was developed. NeMo consists of two modules: a motion prediction module comprising of a feed forward neural network (Multilayer Perceptron MLP), which uses previous data from platform motions to predict future motion, and a multi-class classifier module, which uses the dierence between predicted motion and measured actual motion as inputs to indicate whether or not there has been a failure, for various groups of mooring lines. The system was trained and tested using simulated data from a time- domain platform motion simulator. Results of the implemented NeMo system showed it is able to detect the occurrence of failure in the mooring lines, with errors between the forecast and the measured movements when there was a line breakage. These errors are such that the developed multi-class classifier had a 99% accuracy prediction rate when classifying the platform motions.
id USP_467aeeb1aca365c9b098037c472e947b
oai_identifier_str oai:teses.usp.br:tde-27042023-080040
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.NEMO: um estimador de movimento neural para detecção de falha de linha de amarração de plataformas offshore.Aprendizado computacionalClassificaçãoClassificationEstruturas offshoreMachine learningMooring lines breakageNeural networksO?shore platformsRedes NeuraisRompimentos de cabos de ancoragemFloating oshore structures are maintained in the desired position by mooring lines attached to the seabed of the location. These systems are among the main components that guarantee not only the safety of the crew but also the various operations carried out on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines of platforms with dierent levels of draft (load) based on the measurements of the platform motion provided by the Dierential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system was developed. NeMo consists of two modules: a motion prediction module comprising of a feed forward neural network (Multilayer Perceptron MLP), which uses previous data from platform motions to predict future motion, and a multi-class classifier module, which uses the dierence between predicted motion and measured actual motion as inputs to indicate whether or not there has been a failure, for various groups of mooring lines. The system was trained and tested using simulated data from a time- domain platform motion simulator. Results of the implemented NeMo system showed it is able to detect the occurrence of failure in the mooring lines, with errors between the forecast and the measured movements when there was a line breakage. These errors are such that the developed multi-class classifier had a 99% accuracy prediction rate when classifying the platform motions.Estruturas flutuantes offshore são fixadas no local desejado por meio de cabos de amarração ancorados no fundo do mar. Esses sistemas estão entre os principais componentes que garantem não só a segurança da tripulação, mas também das diversas operações realizadas nas plataformas. Nesta tese, o objetivo é detectar a ruptura dos cabos de amarração de plataformas, com diferentes níveis de calado (carga), com base nas medidas do movimento da plataforma fornecidas pelos sensores do Sistema de Posicionamento Global Diferencial (DGPS) e da Unidade de Medição Inercial (IMU). Para isso, foi desenvolvido o sistema Neural Motion Estimator (NeMo). O sistema é composto por dois módulos: um módulo de previsão de movimento composto por uma rede feed forward (Multilayer Perceptron MLP), que usa dados prévios dos movimentos da plataforma para prever o movimento futuro, e um módulo classificador, que usa a diferença entre o movimento previsto e o movimento real medido como entradas para um classificador multiclasse que indica se houve ou não uma falha, para vários grupos de cabos de ancoragem. Os resultados do sistema NeMo mostram que ele é capaz de detectar a ocorrência de falhas nos cabos de ancoragem, mostrando erros entre os movimentos preditos e medidos quando houve um rompimento de cabo. Esses erros são tais que o classificador multiclasse desenvolvido teve uma acurácia de previsão de 99% ao classificar o movimento da plataforma.Biblioteca Digitais de Teses e Dissertações da USPCosta, Anna Helena RealiTannuri, Eduardo AounSa\'ad, Amir Muhammed2023-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:09Zoai:teses.usp.br:tde-27042023-080040Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
NEMO: um estimador de movimento neural para detecção de falha de linha de amarração de plataformas offshore.
title NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
spellingShingle NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
Sa\'ad, Amir Muhammed
Aprendizado computacional
Classificação
Classification
Estruturas offshore
Machine learning
Mooring lines breakage
Neural networks
O?shore platforms
Redes Neurais
Rompimentos de cabos de ancoragem
title_short NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
title_full NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
title_fullStr NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
title_full_unstemmed NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
title_sort NEMO: a neural motion estimator for mooring line failure detection of offshore platforms.
author Sa\'ad, Amir Muhammed
author_facet Sa\'ad, Amir Muhammed
author_role author
dc.contributor.none.fl_str_mv Costa, Anna Helena Reali
Tannuri, Eduardo Aoun
dc.contributor.author.fl_str_mv Sa\'ad, Amir Muhammed
dc.subject.por.fl_str_mv Aprendizado computacional
Classificação
Classification
Estruturas offshore
Machine learning
Mooring lines breakage
Neural networks
O?shore platforms
Redes Neurais
Rompimentos de cabos de ancoragem
topic Aprendizado computacional
Classificação
Classification
Estruturas offshore
Machine learning
Mooring lines breakage
Neural networks
O?shore platforms
Redes Neurais
Rompimentos de cabos de ancoragem
description Floating oshore structures are maintained in the desired position by mooring lines attached to the seabed of the location. These systems are among the main components that guarantee not only the safety of the crew but also the various operations carried out on the platforms. In this thesis, the objective is to detect the rupture of the mooring lines of platforms with dierent levels of draft (load) based on the measurements of the platform motion provided by the Dierential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) sensors. For this, a Neural Motion Estimator (NeMo) system was developed. NeMo consists of two modules: a motion prediction module comprising of a feed forward neural network (Multilayer Perceptron MLP), which uses previous data from platform motions to predict future motion, and a multi-class classifier module, which uses the dierence between predicted motion and measured actual motion as inputs to indicate whether or not there has been a failure, for various groups of mooring lines. The system was trained and tested using simulated data from a time- domain platform motion simulator. Results of the implemented NeMo system showed it is able to detect the occurrence of failure in the mooring lines, with errors between the forecast and the measured movements when there was a line breakage. These errors are such that the developed multi-class classifier had a 99% accuracy prediction rate when classifying the platform motions.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/
url https://www.teses.usp.br/teses/disponiveis/3/3141/tde-27042023-080040/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256538851311616