Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76131/tde-02022023-162852/ |
Resumo: | The Bose-Einstein condensates (BECs) have been a hot topic since Eric A. Cornell and C. E. Wieman were able to experimentally achieve them in 1995 with confined alkaline gases of 87Rb atoms. Since then, with the fairly recent growing use of cold atoms to design BECs, many different theoretical models and experimental setups have appeared in the literature. In particular, the bubble trap shaped potential has been of great interest in the last 20 years, due to its fairly easy experimental manipulation. Inspired by the recent scientific developments in this field, in this work we study the anisotropic bubble trap physics in the thin-shell limit relating the physical parameters of the system with the geometry of the manifold in question, in a very original approach. Firstly, the mathematical background in which our theory is placed is defined and explained, considering the Gaussian Normal Coordinate System (GNCS). This system is well known and allows for a better description of the physics involved, granting a fairly simple understanding of the calculations. Then our main ideas are exposed, where the general potential in which our work is valid is defined with the aid of a parameter ∧ which is used to reach the thin-shell limit as it goes to infinity. It turns out that the usual naive approach for taking the thin-shell limit leads to infinite answers when anisotropic shells are considered. Therefore, in order for us to have a consistent theory, it was necessary to consider regularized infinitesimal anisotropies. The radial oscillation frequency is calculated considering such potential, and a rigorous definition of the thin-shell limit is obtained considering the geometrical distortion of the bubble trap, in order to provide a more sophisticated mathematical description. We chose to work with one experimental potential as a particular example. Next, some physical quantities such as the general potential V , the particle interaction gINT, and the main system Hamiltonian H are manipulated considering expansions in ∧. Non-degenerate time-independent perturbation theory is applied to find the energies in question and an effective Hamiltonian is defined. Finally, this Hamiltonian is solved in the final chapter regarding perturbative solutions in £ for both the ground-state wavefunction and excitation frequencies of the system. |
id |
USP_476cbfbb542a59e8db96752f19e461a2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02022023-162852 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble trapsCondensados de Bose-Einstein e o limite da casca fina em armadilhas de bolha anisotrópicasArmadilha de bolhaBose-Einsten condensatesBubble trapCondensados de Bose-EinsteinLimite da casca finaThin-shell limitThe Bose-Einstein condensates (BECs) have been a hot topic since Eric A. Cornell and C. E. Wieman were able to experimentally achieve them in 1995 with confined alkaline gases of 87Rb atoms. Since then, with the fairly recent growing use of cold atoms to design BECs, many different theoretical models and experimental setups have appeared in the literature. In particular, the bubble trap shaped potential has been of great interest in the last 20 years, due to its fairly easy experimental manipulation. Inspired by the recent scientific developments in this field, in this work we study the anisotropic bubble trap physics in the thin-shell limit relating the physical parameters of the system with the geometry of the manifold in question, in a very original approach. Firstly, the mathematical background in which our theory is placed is defined and explained, considering the Gaussian Normal Coordinate System (GNCS). This system is well known and allows for a better description of the physics involved, granting a fairly simple understanding of the calculations. Then our main ideas are exposed, where the general potential in which our work is valid is defined with the aid of a parameter ∧ which is used to reach the thin-shell limit as it goes to infinity. It turns out that the usual naive approach for taking the thin-shell limit leads to infinite answers when anisotropic shells are considered. Therefore, in order for us to have a consistent theory, it was necessary to consider regularized infinitesimal anisotropies. The radial oscillation frequency is calculated considering such potential, and a rigorous definition of the thin-shell limit is obtained considering the geometrical distortion of the bubble trap, in order to provide a more sophisticated mathematical description. We chose to work with one experimental potential as a particular example. Next, some physical quantities such as the general potential V , the particle interaction gINT, and the main system Hamiltonian H are manipulated considering expansions in ∧. Non-degenerate time-independent perturbation theory is applied to find the energies in question and an effective Hamiltonian is defined. Finally, this Hamiltonian is solved in the final chapter regarding perturbative solutions in £ for both the ground-state wavefunction and excitation frequencies of the system.O condensado de Bose-Einstein (BEC) é um tema popular desde que Eric A. Cornell e C. E. Wieman conseguiram alcançá-lo experimentalmente em 1995, com gases alcalinos confinados de átomos de 87Rb. Desde então, com o uso crescente de átomos frios para projetar BEC, muitos modelos teóricos e configurações experimentais diferentes apareceram na literatura. Em particular, o potencial em forma de armadilha de bolha tem sido de grande interesse nos últimos 20 anos, devido à sua manipulação experimental relativamente simples. Inspirados pelos recentes desenvolvimentos científicos nesta área, neste trabalho estudamos a física de armadilhas de bolhas anisotrópicas no limite da casca fina, relacionando os parâmetros físicos do sistema com a geometria da variedade em questão, em uma abordagem original. Em primeiro lugar, define-se e explica-se a base matemática em que se insere a nossa teoria, considerando o Sistema de Coordenadas Normais Gaussianas (SCNG). Esse sistema é bastante conhecido e permite uma melhor descrição do física envolvida, garantindo uma compreensão bastante simples dos cálculos. Em seguida, são expostas nossas ideias principais, e o potencial geral em que nosso trabalho é validado e definido com a ajuda de um parâmetro ∧, usado para atingir o limite da casca fina à medida que vai para o infinito. A abordagem ingênua usual para tomar o limite de casca fina leva a respostas infinitas quando cascas finas anisotrópicas são consideradas. Portanto, para termos uma teoria consistente, foi necessário considerar anisotropias infinitesimais regularizadas. A frequência de oscilação radial é calculada levando em conta tal potencial, e uma definição rigorosa do limite de casca fina é obtida considerando a distorção geométrica da armadilha de bolha, a fim de fornecer uma descrição matemática mais sofisticada. Optamos por trabalhar com um potencial experimental como exemplo particular. Em seguida, algumas grandezas físicas como o potencial geral H , a interação de partículas gINT e o Hamiltoniano do sistema principal H são manipulados considerando expansões em ∧. A teoria de perturbação independente do tempo não degenerada é aplicada para encontrar as energias em questão, e um Hamiltoniano efetivo é definido. Finalmente, este Hamiltoniano é resolvido no capítulo final, considerando soluções perturbativas em £ tanto para a função de onda do estado fundamental quanto para as frequências de excitação do sistema.Biblioteca Digitais de Teses e Dissertações da USPSantos, Francisco Ednilson Alves dosBiral, Elias José Portes2022-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76131/tde-02022023-162852/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-02-06T12:22:17Zoai:teses.usp.br:tde-02022023-162852Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-02-06T12:22:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps Condensados de Bose-Einstein e o limite da casca fina em armadilhas de bolha anisotrópicas |
title |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps |
spellingShingle |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps Biral, Elias José Portes Armadilha de bolha Bose-Einsten condensates Bubble trap Condensados de Bose-Einstein Limite da casca fina Thin-shell limit |
title_short |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps |
title_full |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps |
title_fullStr |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps |
title_full_unstemmed |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps |
title_sort |
Bose-Einstein condensates and the thin-shell limit in anisotropic bubble traps |
author |
Biral, Elias José Portes |
author_facet |
Biral, Elias José Portes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Francisco Ednilson Alves dos |
dc.contributor.author.fl_str_mv |
Biral, Elias José Portes |
dc.subject.por.fl_str_mv |
Armadilha de bolha Bose-Einsten condensates Bubble trap Condensados de Bose-Einstein Limite da casca fina Thin-shell limit |
topic |
Armadilha de bolha Bose-Einsten condensates Bubble trap Condensados de Bose-Einstein Limite da casca fina Thin-shell limit |
description |
The Bose-Einstein condensates (BECs) have been a hot topic since Eric A. Cornell and C. E. Wieman were able to experimentally achieve them in 1995 with confined alkaline gases of 87Rb atoms. Since then, with the fairly recent growing use of cold atoms to design BECs, many different theoretical models and experimental setups have appeared in the literature. In particular, the bubble trap shaped potential has been of great interest in the last 20 years, due to its fairly easy experimental manipulation. Inspired by the recent scientific developments in this field, in this work we study the anisotropic bubble trap physics in the thin-shell limit relating the physical parameters of the system with the geometry of the manifold in question, in a very original approach. Firstly, the mathematical background in which our theory is placed is defined and explained, considering the Gaussian Normal Coordinate System (GNCS). This system is well known and allows for a better description of the physics involved, granting a fairly simple understanding of the calculations. Then our main ideas are exposed, where the general potential in which our work is valid is defined with the aid of a parameter ∧ which is used to reach the thin-shell limit as it goes to infinity. It turns out that the usual naive approach for taking the thin-shell limit leads to infinite answers when anisotropic shells are considered. Therefore, in order for us to have a consistent theory, it was necessary to consider regularized infinitesimal anisotropies. The radial oscillation frequency is calculated considering such potential, and a rigorous definition of the thin-shell limit is obtained considering the geometrical distortion of the bubble trap, in order to provide a more sophisticated mathematical description. We chose to work with one experimental potential as a particular example. Next, some physical quantities such as the general potential V , the particle interaction gINT, and the main system Hamiltonian H are manipulated considering expansions in ∧. Non-degenerate time-independent perturbation theory is applied to find the energies in question and an effective Hamiltonian is defined. Finally, this Hamiltonian is solved in the final chapter regarding perturbative solutions in £ for both the ground-state wavefunction and excitation frequencies of the system. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76131/tde-02022023-162852/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76131/tde-02022023-162852/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256599491510272 |