Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído

Detalhes bibliográficos
Autor(a) principal: Simonetti, Roberta
Data de Publicação: 1997
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43133/tde-17122013-145626/
Resumo: Neste trabalho investigamos o aprendizado supervisionado on-line, com ênfase nas habilidades de generalização, de redes neurais feedforward. O estudo de algoritmos de aprendizagem ótimos, no sentido da generalização, é estendido para duas diferentes classes de arquiteturas: a máquina paridade com estrutura de árvore e K unidades escondidas, e o perceptron reversed wedge, uma máquina de uma camada com função de transferência não monotônica. O papel do ruído é de fundamental importância na teoria de aprendizagem. Neste trabalho estudamos os processos com ruído que podem ser parametrizados por uma única quantidade, o nível de ruído. No caso da máquina paridade analisamos o aprendizado na presença de ruído multiplicativo (na saída). O algoritmo ótimo é muito superior aos algoritmos de aprendizagem até então apresentados, como o algoritmo de mínima ação (LAA), como podemos ver, por exemplo, através do comportamento do erro de generalização que decai após a apresentação de p exemplos, com l/p ao invés de l/\'p POT. 1/3\' como no caso do LAA. Além deste fato, observa-se que não existe um nível de ruído crítico a partir do qual a rede não é capaz de generalizar, como ocorre no LAA. Além do ruído multiplicativo, no caso do perceptron reversed wedge consideramos também o ruído aditivo. Analisamos a função de modulação fornecida pelo algoritmo ótimo e as curvas de aprendizagem. A aprendizagem ótima requer o uso de parâmetros que usualmente não estão disponíveis. Neste caso estudamos a influência da utilização de uma estimativa do nível de ruído sobre as curvas de aprendizado. Estes resultados são apresentados na forma do que chamamos de diagrama de robustez, no espaço de nível de ruído real versus nível de ruído estimado. As linhas de transição deste diagrama definem regiões com comportamentos dinâmicos diferentes. Entre as propriedades mais interessantes encontradas, destacamos a universalidade do diagrama de robustez para ruído multiplicativo, uma vez que é exatamente o mesmo para a máquina paridade e comitê com estrutura de árvore, e para o perceptron reversed-wedge. Entretanto, esta universalidade não se estende para o caso de ruído aditivo, uma vez que, neste caso, os diagramas dependem da arquitetura em questão.
id USP_4796c75bf8177e7b9442d060867f3a32
oai_identifier_str oai:teses.usp.br:tde-17122013-145626
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de RuídoGeneralization and robustness: learning in neural networks in the presence of noiseArtificial neural networksDinâmicas de aprendizagemDynamic learningGeneralizaçãoGeneralizationMecânica estatísticaProcessos estocásticosRedes neurais artificiaisStatistical mechanicsStochastic processesNeste trabalho investigamos o aprendizado supervisionado on-line, com ênfase nas habilidades de generalização, de redes neurais feedforward. O estudo de algoritmos de aprendizagem ótimos, no sentido da generalização, é estendido para duas diferentes classes de arquiteturas: a máquina paridade com estrutura de árvore e K unidades escondidas, e o perceptron reversed wedge, uma máquina de uma camada com função de transferência não monotônica. O papel do ruído é de fundamental importância na teoria de aprendizagem. Neste trabalho estudamos os processos com ruído que podem ser parametrizados por uma única quantidade, o nível de ruído. No caso da máquina paridade analisamos o aprendizado na presença de ruído multiplicativo (na saída). O algoritmo ótimo é muito superior aos algoritmos de aprendizagem até então apresentados, como o algoritmo de mínima ação (LAA), como podemos ver, por exemplo, através do comportamento do erro de generalização que decai após a apresentação de p exemplos, com l/p ao invés de l/\'p POT. 1/3\' como no caso do LAA. Além deste fato, observa-se que não existe um nível de ruído crítico a partir do qual a rede não é capaz de generalizar, como ocorre no LAA. Além do ruído multiplicativo, no caso do perceptron reversed wedge consideramos também o ruído aditivo. Analisamos a função de modulação fornecida pelo algoritmo ótimo e as curvas de aprendizagem. A aprendizagem ótima requer o uso de parâmetros que usualmente não estão disponíveis. Neste caso estudamos a influência da utilização de uma estimativa do nível de ruído sobre as curvas de aprendizado. Estes resultados são apresentados na forma do que chamamos de diagrama de robustez, no espaço de nível de ruído real versus nível de ruído estimado. As linhas de transição deste diagrama definem regiões com comportamentos dinâmicos diferentes. Entre as propriedades mais interessantes encontradas, destacamos a universalidade do diagrama de robustez para ruído multiplicativo, uma vez que é exatamente o mesmo para a máquina paridade e comitê com estrutura de árvore, e para o perceptron reversed-wedge. Entretanto, esta universalidade não se estende para o caso de ruído aditivo, uma vez que, neste caso, os diagramas dependem da arquitetura em questão.In this work online supervised learning is investigated with emphasis on the generalization abilities of feedforward neural networks. The study of optimal learning algorithms, in the sense of generalization, is extended to two different classes of architectures; the tree parity machine (PM) with K hidden units and the reverse wedge perceptron (RWP), a single layer machine with a non monotonic transfer function. The role of noise is of fundamental importance in learning theory, and we study noise processes which can be parametrized by a single quantity, the noise level. For the PM we analize learning in the presence of multiplicative or output noise. The optimal algorithm is far superior than previous learning algorithms, such as the Least Action Algorithm (LAA), since for example, the generalization error\'s decay is proportional to l /p instead of l/\'p POT. 1/3\' for the LAA, after p examples have been used for training. Furthermore there is no critical noise level, beyond which no generalization ability is attainable, as is the case for the LAA. For the RW perceptron in addition to multiplicative noise we also consider additive noise. The optimal algorithm modulation function and the learning curves are analized. Optimal learning requires using certain usually unavailable parameters. In this case, we study the influence that misevaluation of the noise levels has on the learning curves. The results are presented in terms of what we have called Robustness Phase Diagrams (RPD), in a space of real noise level against assumed noise level. The RPD boundary lines separate between different dynamical behaviours. Among the most interesting properties, we have found the universality of the RPD for multiplicative noise, since it is exactly the same for the PM, RWP and the tree committee machine. However this universality does not hold for the additive noise case, since RPD\'s are shown to be architecture dependent.Biblioteca Digitais de Teses e Dissertações da USPAlfonso, Nestor Felipe CatichaSimonetti, Roberta1997-05-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43133/tde-17122013-145626/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-17122013-145626Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
Generalization and robustness: learning in neural networks in the presence of noise
title Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
spellingShingle Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
Simonetti, Roberta
Artificial neural networks
Dinâmicas de aprendizagem
Dynamic learning
Generalização
Generalization
Mecânica estatística
Processos estocásticos
Redes neurais artificiais
Statistical mechanics
Stochastic processes
title_short Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
title_full Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
title_fullStr Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
title_full_unstemmed Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
title_sort Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído
author Simonetti, Roberta
author_facet Simonetti, Roberta
author_role author
dc.contributor.none.fl_str_mv Alfonso, Nestor Felipe Caticha
dc.contributor.author.fl_str_mv Simonetti, Roberta
dc.subject.por.fl_str_mv Artificial neural networks
Dinâmicas de aprendizagem
Dynamic learning
Generalização
Generalization
Mecânica estatística
Processos estocásticos
Redes neurais artificiais
Statistical mechanics
Stochastic processes
topic Artificial neural networks
Dinâmicas de aprendizagem
Dynamic learning
Generalização
Generalization
Mecânica estatística
Processos estocásticos
Redes neurais artificiais
Statistical mechanics
Stochastic processes
description Neste trabalho investigamos o aprendizado supervisionado on-line, com ênfase nas habilidades de generalização, de redes neurais feedforward. O estudo de algoritmos de aprendizagem ótimos, no sentido da generalização, é estendido para duas diferentes classes de arquiteturas: a máquina paridade com estrutura de árvore e K unidades escondidas, e o perceptron reversed wedge, uma máquina de uma camada com função de transferência não monotônica. O papel do ruído é de fundamental importância na teoria de aprendizagem. Neste trabalho estudamos os processos com ruído que podem ser parametrizados por uma única quantidade, o nível de ruído. No caso da máquina paridade analisamos o aprendizado na presença de ruído multiplicativo (na saída). O algoritmo ótimo é muito superior aos algoritmos de aprendizagem até então apresentados, como o algoritmo de mínima ação (LAA), como podemos ver, por exemplo, através do comportamento do erro de generalização que decai após a apresentação de p exemplos, com l/p ao invés de l/\'p POT. 1/3\' como no caso do LAA. Além deste fato, observa-se que não existe um nível de ruído crítico a partir do qual a rede não é capaz de generalizar, como ocorre no LAA. Além do ruído multiplicativo, no caso do perceptron reversed wedge consideramos também o ruído aditivo. Analisamos a função de modulação fornecida pelo algoritmo ótimo e as curvas de aprendizagem. A aprendizagem ótima requer o uso de parâmetros que usualmente não estão disponíveis. Neste caso estudamos a influência da utilização de uma estimativa do nível de ruído sobre as curvas de aprendizado. Estes resultados são apresentados na forma do que chamamos de diagrama de robustez, no espaço de nível de ruído real versus nível de ruído estimado. As linhas de transição deste diagrama definem regiões com comportamentos dinâmicos diferentes. Entre as propriedades mais interessantes encontradas, destacamos a universalidade do diagrama de robustez para ruído multiplicativo, uma vez que é exatamente o mesmo para a máquina paridade e comitê com estrutura de árvore, e para o perceptron reversed-wedge. Entretanto, esta universalidade não se estende para o caso de ruído aditivo, uma vez que, neste caso, os diagramas dependem da arquitetura em questão.
publishDate 1997
dc.date.none.fl_str_mv 1997-05-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43133/tde-17122013-145626/
url http://www.teses.usp.br/teses/disponiveis/43/43133/tde-17122013-145626/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257056432619520