Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11140/tde-30052012-082826/ |
Resumo: | A escassez de informações do solo que permitam o seu uso adequado, seja para fins agrícola, ambiental ou de projeto urbanos, pode ser minimizada com soluções provenientes do desenvolvimento de novas tecnologias. Nesse sentido, o presente estudo teve como objetivo aplicar duas estratégias digitais para obtenção de mapas de solos preliminares em áreas onde não foram realizados levantamentos pedológicos convencionais. As estratégias foram executadas com base em variáveis ambientais que estabelecem relações entre ocorrência de solos e suas posições na paisagem. A área de estudo compreendeu o município de Barra Bonita-SP, totalizando 11.072 ha. Para uso na predição dos solos pela técnica de Redes Neurais Artificiais (RNA) foram utilizadas as variáveis: declividade, elevação, perfil de curvatura, plano de curvatura e índice de convergência derivados de um Modelo Digital de Elevação (MDE), além das informações de geologia e das superfícies geomórficas identificadas na região. Na primeira estratégia, por meio de uma análise de agrupamento (Fuzzy k-médias) das variáveis, foram escolhidas cinco áreas chaves distribuídas na área de estudo, nas quais foi realizado levantamento de solos de nível semidetalhado para reconhecimento das unidades de mapeamento. Na estratégia 2, elaborou-se um mapa de solos de nível detalhado a partir de dados pré-existentes de apenas uma área chave, localizada no centro da região. Com a identificação das unidades de mapeamento foram gerados arquivos de treinamento e testes das redes neurais. Utilizou-se o simulador JavaNNS e o algoritmo de aprendizado backpropagation. Conjuntos de variáveis ambientais foram testados, avaliando a importância de cada variável na discriminação dos solos. A rede que exibiu melhor desempenho do índice Kappa foi utilizada para generalização de suas informações, obtendo os mapas digitais de solos. Pela aplicação de tabulação cruzada foram analisadas as correspondências espaciais entre os mapas digitais e um mapa convencional nível semidetalhado da região. Foram coletados pontos de referência para validar o desempenho dos mapas digitais. De acordo com a posição na paisagem e material de origem subjacente, notou-se tendência na ocorrência das classes de solos nas áreas chaves mapeadas. A mesma disposição dos solos foi observada nas classificações digitais. Os atributos do terreno elevação e declividade exibiram maior influência na distinção entre os solos pelas redes neurais em ambas as estratégias. A comparação com pontos de referência mostrou que o mapa digital produzido com base em unidades de mapeamento provenientes de abordagem convencional detalhada teve um desempenho superior (81,8% de concordância) ao mapa baseado em levantamento pedológico de nível semidetalhado (72,7%). Este estudo mostrou que a obtenção de mapas digitais de solos, com uso de variáveis ambientais que expressem a relação solo-paisagem, pode contribuir para a geração de informações preliminares do solo em locais não mapeados, a partir de unidades de mapeamento obtidas em áreas adjacentes. |
id |
USP_47b3c45eace780b8892c34399c8dec3e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-30052012-082826 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagemStrategies for digital soil mapping by artificial neural networks based on soil-landscapeArtificial intelligenceAtributos geomorfométricosDigital soil mappingGeomorphometric attributesInteligência artificialMapeamento digital de solosNeural networksRedes neuraisRelação solo-paisagemsoil-landscapeA escassez de informações do solo que permitam o seu uso adequado, seja para fins agrícola, ambiental ou de projeto urbanos, pode ser minimizada com soluções provenientes do desenvolvimento de novas tecnologias. Nesse sentido, o presente estudo teve como objetivo aplicar duas estratégias digitais para obtenção de mapas de solos preliminares em áreas onde não foram realizados levantamentos pedológicos convencionais. As estratégias foram executadas com base em variáveis ambientais que estabelecem relações entre ocorrência de solos e suas posições na paisagem. A área de estudo compreendeu o município de Barra Bonita-SP, totalizando 11.072 ha. Para uso na predição dos solos pela técnica de Redes Neurais Artificiais (RNA) foram utilizadas as variáveis: declividade, elevação, perfil de curvatura, plano de curvatura e índice de convergência derivados de um Modelo Digital de Elevação (MDE), além das informações de geologia e das superfícies geomórficas identificadas na região. Na primeira estratégia, por meio de uma análise de agrupamento (Fuzzy k-médias) das variáveis, foram escolhidas cinco áreas chaves distribuídas na área de estudo, nas quais foi realizado levantamento de solos de nível semidetalhado para reconhecimento das unidades de mapeamento. Na estratégia 2, elaborou-se um mapa de solos de nível detalhado a partir de dados pré-existentes de apenas uma área chave, localizada no centro da região. Com a identificação das unidades de mapeamento foram gerados arquivos de treinamento e testes das redes neurais. Utilizou-se o simulador JavaNNS e o algoritmo de aprendizado backpropagation. Conjuntos de variáveis ambientais foram testados, avaliando a importância de cada variável na discriminação dos solos. A rede que exibiu melhor desempenho do índice Kappa foi utilizada para generalização de suas informações, obtendo os mapas digitais de solos. Pela aplicação de tabulação cruzada foram analisadas as correspondências espaciais entre os mapas digitais e um mapa convencional nível semidetalhado da região. Foram coletados pontos de referência para validar o desempenho dos mapas digitais. De acordo com a posição na paisagem e material de origem subjacente, notou-se tendência na ocorrência das classes de solos nas áreas chaves mapeadas. A mesma disposição dos solos foi observada nas classificações digitais. Os atributos do terreno elevação e declividade exibiram maior influência na distinção entre os solos pelas redes neurais em ambas as estratégias. A comparação com pontos de referência mostrou que o mapa digital produzido com base em unidades de mapeamento provenientes de abordagem convencional detalhada teve um desempenho superior (81,8% de concordância) ao mapa baseado em levantamento pedológico de nível semidetalhado (72,7%). Este estudo mostrou que a obtenção de mapas digitais de solos, com uso de variáveis ambientais que expressem a relação solo-paisagem, pode contribuir para a geração de informações preliminares do solo em locais não mapeados, a partir de unidades de mapeamento obtidas em áreas adjacentes.The scarcity of land information to enable its proper use, whether for agricultural, environmental and urban design, can be minimized by solutions from the development of new technologies. Accordingly, this study aimed to apply two strategies to obtain digital maps of soil in areas where no preliminary surveys were carried out conventional pedological. The strategies were implemented based on environmental variables that establish relations between the occurrence of soils and their positions in the landscape. The study area comprised the municipality of Barra Bonita, SP, totaling 11,072 ha. For use in the prediction of soil by the technique of Artificial Neural Networks (ANN) were used variables: slope, elevation, profile curvature, plan curvature and convergence index derived from a Digital Elevation Model (DEM), in addition to information geology and geomorphic surfaces identified in the region. In the first strategy, through a cluster analysis (Fuzzy k-means) of variables, we selected five key areas distributed in the study area, soil survey being conducted semi-detailed level at these sites for recognition of the map units. In strategy 2, a map was drawn up detailed level of soil from pre-existing data of only one key area, located in the center of the region. Identifying the map units were generated files for training and testing of neural networks. Was used the simulator JavaNNS and learning algorithm \"backpropagation. Sets environmental variables were tested by assessing the importance of each variable to predict soil. The network showed better performance for the Kappa index was used to generalize their information, obtaining the digital soil maps. By applying cross tabulation analyzed the spatial correspondence between the digital maps and a conventional map of the region. Reference points were collected to validate the performance of digital maps. According to the position in the landscape and the underlying source material, was noticed a tendency of occurrence of soil classes in key areas mapped. The same arrangement was observed in the soil classifications digital. The attributes of the terrain elevation and slope exhibited a greater influence on the distinction between the soil by the neural networks in both strategies. The comparison with reference points showed that the digital map produced based on mapping units from the conventional approach detailed outperformed (81.8% agreement) to the map based on pedological survey of semi-detailed level (72.7 %). This study showed that to obtain digital maps of soils, use of environmental variables that express the soillandscape relationship, may contribute to the generation of information preeliminares soil in areas not mapped from map units obtained from adjacent areas.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloArruda, Gustavo Pais de2012-05-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11140/tde-30052012-082826/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:31Zoai:teses.usp.br:tde-30052012-082826Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:31Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem Strategies for digital soil mapping by artificial neural networks based on soil-landscape |
title |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem |
spellingShingle |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem Arruda, Gustavo Pais de Artificial intelligence Atributos geomorfométricos Digital soil mapping Geomorphometric attributes Inteligência artificial Mapeamento digital de solos Neural networks Redes neurais Relação solo-paisagem soil-landscape |
title_short |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem |
title_full |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem |
title_fullStr |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem |
title_full_unstemmed |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem |
title_sort |
Estratégias de mapeamento digital de solos por redes neurais artificiais baseadas na relação solo-paisagem |
author |
Arruda, Gustavo Pais de |
author_facet |
Arruda, Gustavo Pais de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
dc.contributor.author.fl_str_mv |
Arruda, Gustavo Pais de |
dc.subject.por.fl_str_mv |
Artificial intelligence Atributos geomorfométricos Digital soil mapping Geomorphometric attributes Inteligência artificial Mapeamento digital de solos Neural networks Redes neurais Relação solo-paisagem soil-landscape |
topic |
Artificial intelligence Atributos geomorfométricos Digital soil mapping Geomorphometric attributes Inteligência artificial Mapeamento digital de solos Neural networks Redes neurais Relação solo-paisagem soil-landscape |
description |
A escassez de informações do solo que permitam o seu uso adequado, seja para fins agrícola, ambiental ou de projeto urbanos, pode ser minimizada com soluções provenientes do desenvolvimento de novas tecnologias. Nesse sentido, o presente estudo teve como objetivo aplicar duas estratégias digitais para obtenção de mapas de solos preliminares em áreas onde não foram realizados levantamentos pedológicos convencionais. As estratégias foram executadas com base em variáveis ambientais que estabelecem relações entre ocorrência de solos e suas posições na paisagem. A área de estudo compreendeu o município de Barra Bonita-SP, totalizando 11.072 ha. Para uso na predição dos solos pela técnica de Redes Neurais Artificiais (RNA) foram utilizadas as variáveis: declividade, elevação, perfil de curvatura, plano de curvatura e índice de convergência derivados de um Modelo Digital de Elevação (MDE), além das informações de geologia e das superfícies geomórficas identificadas na região. Na primeira estratégia, por meio de uma análise de agrupamento (Fuzzy k-médias) das variáveis, foram escolhidas cinco áreas chaves distribuídas na área de estudo, nas quais foi realizado levantamento de solos de nível semidetalhado para reconhecimento das unidades de mapeamento. Na estratégia 2, elaborou-se um mapa de solos de nível detalhado a partir de dados pré-existentes de apenas uma área chave, localizada no centro da região. Com a identificação das unidades de mapeamento foram gerados arquivos de treinamento e testes das redes neurais. Utilizou-se o simulador JavaNNS e o algoritmo de aprendizado backpropagation. Conjuntos de variáveis ambientais foram testados, avaliando a importância de cada variável na discriminação dos solos. A rede que exibiu melhor desempenho do índice Kappa foi utilizada para generalização de suas informações, obtendo os mapas digitais de solos. Pela aplicação de tabulação cruzada foram analisadas as correspondências espaciais entre os mapas digitais e um mapa convencional nível semidetalhado da região. Foram coletados pontos de referência para validar o desempenho dos mapas digitais. De acordo com a posição na paisagem e material de origem subjacente, notou-se tendência na ocorrência das classes de solos nas áreas chaves mapeadas. A mesma disposição dos solos foi observada nas classificações digitais. Os atributos do terreno elevação e declividade exibiram maior influência na distinção entre os solos pelas redes neurais em ambas as estratégias. A comparação com pontos de referência mostrou que o mapa digital produzido com base em unidades de mapeamento provenientes de abordagem convencional detalhada teve um desempenho superior (81,8% de concordância) ao mapa baseado em levantamento pedológico de nível semidetalhado (72,7%). Este estudo mostrou que a obtenção de mapas digitais de solos, com uso de variáveis ambientais que expressem a relação solo-paisagem, pode contribuir para a geração de informações preliminares do solo em locais não mapeados, a partir de unidades de mapeamento obtidas em áreas adjacentes. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11140/tde-30052012-082826/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11140/tde-30052012-082826/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257500340977664 |