Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/ |
Resumo: | The objective of this work is to provide some clarity on what the role of the Law can be in shedding light upon algorithmic discrimination, as well as how legal instruments could help minimize its risks, with a specific focus on the Brazilian jurisdiction. To do so, it first engages in a debate about what algorithms indeed are, and how the emergence of the data-driven economy, Big Data, and machine learning have leveraged the use of automated systems. Next, it conceptualizes discrimination, and suggesting a typology of algorithmic discrimination that takes statistics into account to provide a rationalization of the debate. It moves on to discussing the path towards enforcing legal norms against discriminatory outcomes running from the use of algorithms. Because legislation specifically aimed at fighting automated systems is still scarce (or application of the current legislation to the problem is contentious), it engages in a debate about the horizontal effects of fundamental rights - given that a relevant part of discriminatory practices occur among private parties, and the most basic defense an individual has against discrimination is the constitutional right to equality. It then analyzes ordinary legislation in three jurisdictions, the United States of America, Germany, and Brazil, that could also be enforced against discriminatory practices running from algorithms, with a special focus on the Brazilian legislation. The legislative debate concludes with the presentation of two concrete cases of algorithmic discrimination, one concerning the unemployment policy in Poland, and the other regarding credit scoring in Brazil. The cases are presented so that the applicability of Brazilian legislation to deal with algorithmic discrimination can be discussed. The final chapter is focused on debating the path forward and what can and should be done by experts, legislators, and policymakers to foster algorithmic innovation without losing sight of its potential for discrimination. It first presents the literature on algorithmic governance and the many proposals for dealing with the problem - dedicating a specific section to the challenges brought about by machine learning - and then sets out an agenda for Brazil. |
id |
USP_47ecf353bbf99bedbe69f65d73056730 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16072020-174508 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in BrazilDiscriminação Algorítmica - O desafio em desvendar a desigualdade no BrasilAlgorithmic discriminationAlgorithmic governanceArtificial intelligenceBig dataBig dataDiscriminação algorítmicaEqualityGovernança algorítmicaIgualdadeInteligência artificialThe objective of this work is to provide some clarity on what the role of the Law can be in shedding light upon algorithmic discrimination, as well as how legal instruments could help minimize its risks, with a specific focus on the Brazilian jurisdiction. To do so, it first engages in a debate about what algorithms indeed are, and how the emergence of the data-driven economy, Big Data, and machine learning have leveraged the use of automated systems. Next, it conceptualizes discrimination, and suggesting a typology of algorithmic discrimination that takes statistics into account to provide a rationalization of the debate. It moves on to discussing the path towards enforcing legal norms against discriminatory outcomes running from the use of algorithms. Because legislation specifically aimed at fighting automated systems is still scarce (or application of the current legislation to the problem is contentious), it engages in a debate about the horizontal effects of fundamental rights - given that a relevant part of discriminatory practices occur among private parties, and the most basic defense an individual has against discrimination is the constitutional right to equality. It then analyzes ordinary legislation in three jurisdictions, the United States of America, Germany, and Brazil, that could also be enforced against discriminatory practices running from algorithms, with a special focus on the Brazilian legislation. The legislative debate concludes with the presentation of two concrete cases of algorithmic discrimination, one concerning the unemployment policy in Poland, and the other regarding credit scoring in Brazil. The cases are presented so that the applicability of Brazilian legislation to deal with algorithmic discrimination can be discussed. The final chapter is focused on debating the path forward and what can and should be done by experts, legislators, and policymakers to foster algorithmic innovation without losing sight of its potential for discrimination. It first presents the literature on algorithmic governance and the many proposals for dealing with the problem - dedicating a specific section to the challenges brought about by machine learning - and then sets out an agenda for Brazil.O objetivo desse trabalho é esclarecer qual é o papel que o Direito pode desempenhar no debate sobre a discriminação algorítmica, assim como de que maneira os instrumentos jurídicos podem auxiliar a mitigar os riscos discriminatórios desse tipo de prática, com foco especial na jurisdição brasileira. Para isso, primeiro o trabalho propõe um debate sobre o que são algoritmos, e como a emergência da economia de dados, do Big Data e de técnicas de machine learning impulsionam o uso de sistemas automatizados. Em seguida, conceitua-se a discriminação, propondo-se uma tipologia para a discriminação algorítmica que leva em conta questões estatísticas, a fim de racionalizar a discussão. A dissertação então parte para o debate sobre os caminhos para a aplicação de normas jurídicas em face de discriminação algorítmica. Dado que leis e normas especificamente voltados a esse tema ainda não são muito difundidas (e que a aplicação da legislação existente a essa questão é controversa), o trabalho propõe um debate sobre a eficácia horizontal dos direitos fundamentais - tendo em vista que boa parte das práticas discriminatórias via uso de algoritmos se dá entre partes privadas, e que a defesa mais básica que um indivíduo tem contra a discriminação é o direito constitucionalmente garantido à igualdade. Passa-se então a uma análise da legislação ordinária em três jurisdições, Estados Unidos da América, Alemanha e Brasil, legislação essa que pode também ser aplicada em casos de práticas discriminatórias levadas a cabo via algoritmos, dando especial destaque ao caso brasileiro. Esse debate legislativo é concluído com a apresentação de dois casos concretos, um que diz respeito à política de acesso a emprego na Polônia e outro que trata das práticas de credit scoring no Brasil. Os casos são apresentados de forma a se pensar a eventual possibilidade de uso de regras brasileiras para lidar com os temas discriminatórios que se colocam concretamente. O capítulo final tem como foco o debate do caminho a ser trilhado, e qual pode e deve ser feito por especialistas, legisladores e aplicadores do direito para promover a inovação no campo algorítmico sem perder de vista seus potenciais impactos discriminatórios. Primeiro, apresentase a literatura sobre governança algorítmica e as muitas propostas que pretendem endereçar o tema - com especial atenção aos desafios apresentados pelo machine learning - e então delineiase uma agenda para o Brasil sobre o assunto.Biblioteca Digitais de Teses e Dissertações da USPSilva, Luís Virgílio Afonso daMattiuzzo, Marcela2019-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-16T12:59:01Zoai:teses.usp.br:tde-16072020-174508Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-16T12:59:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil Discriminação Algorítmica - O desafio em desvendar a desigualdade no Brasil |
title |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil |
spellingShingle |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil Mattiuzzo, Marcela Algorithmic discrimination Algorithmic governance Artificial intelligence Big data Big data Discriminação algorítmica Equality Governança algorítmica Igualdade Inteligência artificial |
title_short |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil |
title_full |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil |
title_fullStr |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil |
title_full_unstemmed |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil |
title_sort |
Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil |
author |
Mattiuzzo, Marcela |
author_facet |
Mattiuzzo, Marcela |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Luís Virgílio Afonso da |
dc.contributor.author.fl_str_mv |
Mattiuzzo, Marcela |
dc.subject.por.fl_str_mv |
Algorithmic discrimination Algorithmic governance Artificial intelligence Big data Big data Discriminação algorítmica Equality Governança algorítmica Igualdade Inteligência artificial |
topic |
Algorithmic discrimination Algorithmic governance Artificial intelligence Big data Big data Discriminação algorítmica Equality Governança algorítmica Igualdade Inteligência artificial |
description |
The objective of this work is to provide some clarity on what the role of the Law can be in shedding light upon algorithmic discrimination, as well as how legal instruments could help minimize its risks, with a specific focus on the Brazilian jurisdiction. To do so, it first engages in a debate about what algorithms indeed are, and how the emergence of the data-driven economy, Big Data, and machine learning have leveraged the use of automated systems. Next, it conceptualizes discrimination, and suggesting a typology of algorithmic discrimination that takes statistics into account to provide a rationalization of the debate. It moves on to discussing the path towards enforcing legal norms against discriminatory outcomes running from the use of algorithms. Because legislation specifically aimed at fighting automated systems is still scarce (or application of the current legislation to the problem is contentious), it engages in a debate about the horizontal effects of fundamental rights - given that a relevant part of discriminatory practices occur among private parties, and the most basic defense an individual has against discrimination is the constitutional right to equality. It then analyzes ordinary legislation in three jurisdictions, the United States of America, Germany, and Brazil, that could also be enforced against discriminatory practices running from algorithms, with a special focus on the Brazilian legislation. The legislative debate concludes with the presentation of two concrete cases of algorithmic discrimination, one concerning the unemployment policy in Poland, and the other regarding credit scoring in Brazil. The cases are presented so that the applicability of Brazilian legislation to deal with algorithmic discrimination can be discussed. The final chapter is focused on debating the path forward and what can and should be done by experts, legislators, and policymakers to foster algorithmic innovation without losing sight of its potential for discrimination. It first presents the literature on algorithmic governance and the many proposals for dealing with the problem - dedicating a specific section to the challenges brought about by machine learning - and then sets out an agenda for Brazil. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/ |
url |
https://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257075179061248 |