Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil

Detalhes bibliográficos
Autor(a) principal: Mattiuzzo, Marcela
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/
Resumo: The objective of this work is to provide some clarity on what the role of the Law can be in shedding light upon algorithmic discrimination, as well as how legal instruments could help minimize its risks, with a specific focus on the Brazilian jurisdiction. To do so, it first engages in a debate about what algorithms indeed are, and how the emergence of the data-driven economy, Big Data, and machine learning have leveraged the use of automated systems. Next, it conceptualizes discrimination, and suggesting a typology of algorithmic discrimination that takes statistics into account to provide a rationalization of the debate. It moves on to discussing the path towards enforcing legal norms against discriminatory outcomes running from the use of algorithms. Because legislation specifically aimed at fighting automated systems is still scarce (or application of the current legislation to the problem is contentious), it engages in a debate about the horizontal effects of fundamental rights - given that a relevant part of discriminatory practices occur among private parties, and the most basic defense an individual has against discrimination is the constitutional right to equality. It then analyzes ordinary legislation in three jurisdictions, the United States of America, Germany, and Brazil, that could also be enforced against discriminatory practices running from algorithms, with a special focus on the Brazilian legislation. The legislative debate concludes with the presentation of two concrete cases of algorithmic discrimination, one concerning the unemployment policy in Poland, and the other regarding credit scoring in Brazil. The cases are presented so that the applicability of Brazilian legislation to deal with algorithmic discrimination can be discussed. The final chapter is focused on debating the path forward and what can and should be done by experts, legislators, and policymakers to foster algorithmic innovation without losing sight of its potential for discrimination. It first presents the literature on algorithmic governance and the many proposals for dealing with the problem - dedicating a specific section to the challenges brought about by machine learning - and then sets out an agenda for Brazil.
id USP_47ecf353bbf99bedbe69f65d73056730
oai_identifier_str oai:teses.usp.br:tde-16072020-174508
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Algorithmic Discrimination - The Challenge of Unveiling Inequality in BrazilDiscriminação Algorítmica - O desafio em desvendar a desigualdade no BrasilAlgorithmic discriminationAlgorithmic governanceArtificial intelligenceBig dataBig dataDiscriminação algorítmicaEqualityGovernança algorítmicaIgualdadeInteligência artificialThe objective of this work is to provide some clarity on what the role of the Law can be in shedding light upon algorithmic discrimination, as well as how legal instruments could help minimize its risks, with a specific focus on the Brazilian jurisdiction. To do so, it first engages in a debate about what algorithms indeed are, and how the emergence of the data-driven economy, Big Data, and machine learning have leveraged the use of automated systems. Next, it conceptualizes discrimination, and suggesting a typology of algorithmic discrimination that takes statistics into account to provide a rationalization of the debate. It moves on to discussing the path towards enforcing legal norms against discriminatory outcomes running from the use of algorithms. Because legislation specifically aimed at fighting automated systems is still scarce (or application of the current legislation to the problem is contentious), it engages in a debate about the horizontal effects of fundamental rights - given that a relevant part of discriminatory practices occur among private parties, and the most basic defense an individual has against discrimination is the constitutional right to equality. It then analyzes ordinary legislation in three jurisdictions, the United States of America, Germany, and Brazil, that could also be enforced against discriminatory practices running from algorithms, with a special focus on the Brazilian legislation. The legislative debate concludes with the presentation of two concrete cases of algorithmic discrimination, one concerning the unemployment policy in Poland, and the other regarding credit scoring in Brazil. The cases are presented so that the applicability of Brazilian legislation to deal with algorithmic discrimination can be discussed. The final chapter is focused on debating the path forward and what can and should be done by experts, legislators, and policymakers to foster algorithmic innovation without losing sight of its potential for discrimination. It first presents the literature on algorithmic governance and the many proposals for dealing with the problem - dedicating a specific section to the challenges brought about by machine learning - and then sets out an agenda for Brazil.O objetivo desse trabalho é esclarecer qual é o papel que o Direito pode desempenhar no debate sobre a discriminação algorítmica, assim como de que maneira os instrumentos jurídicos podem auxiliar a mitigar os riscos discriminatórios desse tipo de prática, com foco especial na jurisdição brasileira. Para isso, primeiro o trabalho propõe um debate sobre o que são algoritmos, e como a emergência da economia de dados, do Big Data e de técnicas de machine learning impulsionam o uso de sistemas automatizados. Em seguida, conceitua-se a discriminação, propondo-se uma tipologia para a discriminação algorítmica que leva em conta questões estatísticas, a fim de racionalizar a discussão. A dissertação então parte para o debate sobre os caminhos para a aplicação de normas jurídicas em face de discriminação algorítmica. Dado que leis e normas especificamente voltados a esse tema ainda não são muito difundidas (e que a aplicação da legislação existente a essa questão é controversa), o trabalho propõe um debate sobre a eficácia horizontal dos direitos fundamentais - tendo em vista que boa parte das práticas discriminatórias via uso de algoritmos se dá entre partes privadas, e que a defesa mais básica que um indivíduo tem contra a discriminação é o direito constitucionalmente garantido à igualdade. Passa-se então a uma análise da legislação ordinária em três jurisdições, Estados Unidos da América, Alemanha e Brasil, legislação essa que pode também ser aplicada em casos de práticas discriminatórias levadas a cabo via algoritmos, dando especial destaque ao caso brasileiro. Esse debate legislativo é concluído com a apresentação de dois casos concretos, um que diz respeito à política de acesso a emprego na Polônia e outro que trata das práticas de credit scoring no Brasil. Os casos são apresentados de forma a se pensar a eventual possibilidade de uso de regras brasileiras para lidar com os temas discriminatórios que se colocam concretamente. O capítulo final tem como foco o debate do caminho a ser trilhado, e qual pode e deve ser feito por especialistas, legisladores e aplicadores do direito para promover a inovação no campo algorítmico sem perder de vista seus potenciais impactos discriminatórios. Primeiro, apresentase a literatura sobre governança algorítmica e as muitas propostas que pretendem endereçar o tema - com especial atenção aos desafios apresentados pelo machine learning - e então delineiase uma agenda para o Brasil sobre o assunto.Biblioteca Digitais de Teses e Dissertações da USPSilva, Luís Virgílio Afonso daMattiuzzo, Marcela2019-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-16T12:59:01Zoai:teses.usp.br:tde-16072020-174508Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-16T12:59:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
Discriminação Algorítmica - O desafio em desvendar a desigualdade no Brasil
title Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
spellingShingle Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
Mattiuzzo, Marcela
Algorithmic discrimination
Algorithmic governance
Artificial intelligence
Big data
Big data
Discriminação algorítmica
Equality
Governança algorítmica
Igualdade
Inteligência artificial
title_short Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
title_full Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
title_fullStr Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
title_full_unstemmed Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
title_sort Algorithmic Discrimination - The Challenge of Unveiling Inequality in Brazil
author Mattiuzzo, Marcela
author_facet Mattiuzzo, Marcela
author_role author
dc.contributor.none.fl_str_mv Silva, Luís Virgílio Afonso da
dc.contributor.author.fl_str_mv Mattiuzzo, Marcela
dc.subject.por.fl_str_mv Algorithmic discrimination
Algorithmic governance
Artificial intelligence
Big data
Big data
Discriminação algorítmica
Equality
Governança algorítmica
Igualdade
Inteligência artificial
topic Algorithmic discrimination
Algorithmic governance
Artificial intelligence
Big data
Big data
Discriminação algorítmica
Equality
Governança algorítmica
Igualdade
Inteligência artificial
description The objective of this work is to provide some clarity on what the role of the Law can be in shedding light upon algorithmic discrimination, as well as how legal instruments could help minimize its risks, with a specific focus on the Brazilian jurisdiction. To do so, it first engages in a debate about what algorithms indeed are, and how the emergence of the data-driven economy, Big Data, and machine learning have leveraged the use of automated systems. Next, it conceptualizes discrimination, and suggesting a typology of algorithmic discrimination that takes statistics into account to provide a rationalization of the debate. It moves on to discussing the path towards enforcing legal norms against discriminatory outcomes running from the use of algorithms. Because legislation specifically aimed at fighting automated systems is still scarce (or application of the current legislation to the problem is contentious), it engages in a debate about the horizontal effects of fundamental rights - given that a relevant part of discriminatory practices occur among private parties, and the most basic defense an individual has against discrimination is the constitutional right to equality. It then analyzes ordinary legislation in three jurisdictions, the United States of America, Germany, and Brazil, that could also be enforced against discriminatory practices running from algorithms, with a special focus on the Brazilian legislation. The legislative debate concludes with the presentation of two concrete cases of algorithmic discrimination, one concerning the unemployment policy in Poland, and the other regarding credit scoring in Brazil. The cases are presented so that the applicability of Brazilian legislation to deal with algorithmic discrimination can be discussed. The final chapter is focused on debating the path forward and what can and should be done by experts, legislators, and policymakers to foster algorithmic innovation without losing sight of its potential for discrimination. It first presents the literature on algorithmic governance and the many proposals for dealing with the problem - dedicating a specific section to the challenges brought about by machine learning - and then sets out an agenda for Brazil.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/
url https://www.teses.usp.br/teses/disponiveis/2/2134/tde-16072020-174508/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257075179061248