O Problema de Corte de Estoque Inteiro

Detalhes bibliográficos
Autor(a) principal: Pinto, Maria José
Data de Publicação: 1999
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-165206/
Resumo: Neste trabalho estudamos o problema de corte de estoque inteiro. Para o caso unidimensional, apresentamos alguns métodos heurísticos selecionados por Wãscher e Gau (1996), os quais realizaram um estudo computacional. Tais métodos partem da solução ótima do problema relaxado por programação linear e buscam uma solução inteira em sua \'vizinhança\'. Neste presente trabalho, estendemos um dos métodos para o caso bidimensional, que consiste em resolver o problema original relaxado, impondo padrões de corte 2-estágios e irrestritos e utilizando a geração de colunas proposta por Gilmore e Gomory (1965). Em seguida, um arredondamento para o inteiro inferior é feito, resultando em um problema residual. Para resolução deste problema, abandonamos novamente a condição de integralidade e utilizamos a técnica de geração de colunas impondo agora padrões de corte 2-estágios e restritos. O arredondamento é realizado, resultando em um novo problema residual, que será tratado da mesma forma. Este procedimento é repetido até que o arredondamento\' resulte somente em freqüências nulas. Por fim, padrões restritos são utilizados até toda a demanda restante ser atendida. Os resultados dos testes computacionais obtidos com a implementação deste método são apresentados, onde foram observadas fortes indicações da propriedade M1RUP ser também válida para problemas de corte bidimensional 2-estágios.
id USP_4966ac7c814fc75c011ca404b3af6dd5
oai_identifier_str oai:teses.usp.br:tde-06032018-165206
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling O Problema de Corte de Estoque InteiroNot availableNão disponívelNot availableNeste trabalho estudamos o problema de corte de estoque inteiro. Para o caso unidimensional, apresentamos alguns métodos heurísticos selecionados por Wãscher e Gau (1996), os quais realizaram um estudo computacional. Tais métodos partem da solução ótima do problema relaxado por programação linear e buscam uma solução inteira em sua \'vizinhança\'. Neste presente trabalho, estendemos um dos métodos para o caso bidimensional, que consiste em resolver o problema original relaxado, impondo padrões de corte 2-estágios e irrestritos e utilizando a geração de colunas proposta por Gilmore e Gomory (1965). Em seguida, um arredondamento para o inteiro inferior é feito, resultando em um problema residual. Para resolução deste problema, abandonamos novamente a condição de integralidade e utilizamos a técnica de geração de colunas impondo agora padrões de corte 2-estágios e restritos. O arredondamento é realizado, resultando em um novo problema residual, que será tratado da mesma forma. Este procedimento é repetido até que o arredondamento\' resulte somente em freqüências nulas. Por fim, padrões restritos são utilizados até toda a demanda restante ser atendida. Os resultados dos testes computacionais obtidos com a implementação deste método são apresentados, onde foram observadas fortes indicações da propriedade M1RUP ser também válida para problemas de corte bidimensional 2-estágios.This work is concemed with the integer cutting stock problem. For the one-dimensional case, we present some heuristic methods selected by Wãscher and Gau (1996), who worked on a computational study. These methods start from an optimal solution for the relaxation problem by linear programming and search for an integer solution in lis `neighbourhood\'. In the present work, we extend one of the methods to the two-dimensional case, which consists of solving the relaxation original problem, imposing unconstrained 2-stage cutting patterns and doing use of the column generation method proposed by Gilmore and Gomory (1965). Then a rounding down is made, resulting in a residual problem. To solve this problem, we abandon again the integer condition and utilize the column generation technique, imposing now constrained 2-stage cutting pattems. The rounding down is made, resulfing in a new residual problem, that will be treated in the same way. This procedure is repeated \' until the rounding down only results in zero frequencies. Finally, constrained panem are used until ali the remaining demand be attended. The results of the computational tests obtained with the implementation of this method are presented, where we observed strong indication that the MIRUP property is also valid to 2-stage two-dimensional cutting problems.Biblioteca Digitais de Teses e Dissertações da USPArenales, Marcos NereuPinto, Maria José1999-05-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-165206/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-06032018-165206Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv O Problema de Corte de Estoque Inteiro
Not available
title O Problema de Corte de Estoque Inteiro
spellingShingle O Problema de Corte de Estoque Inteiro
Pinto, Maria José
Não disponível
Not available
title_short O Problema de Corte de Estoque Inteiro
title_full O Problema de Corte de Estoque Inteiro
title_fullStr O Problema de Corte de Estoque Inteiro
title_full_unstemmed O Problema de Corte de Estoque Inteiro
title_sort O Problema de Corte de Estoque Inteiro
author Pinto, Maria José
author_facet Pinto, Maria José
author_role author
dc.contributor.none.fl_str_mv Arenales, Marcos Nereu
dc.contributor.author.fl_str_mv Pinto, Maria José
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description Neste trabalho estudamos o problema de corte de estoque inteiro. Para o caso unidimensional, apresentamos alguns métodos heurísticos selecionados por Wãscher e Gau (1996), os quais realizaram um estudo computacional. Tais métodos partem da solução ótima do problema relaxado por programação linear e buscam uma solução inteira em sua \'vizinhança\'. Neste presente trabalho, estendemos um dos métodos para o caso bidimensional, que consiste em resolver o problema original relaxado, impondo padrões de corte 2-estágios e irrestritos e utilizando a geração de colunas proposta por Gilmore e Gomory (1965). Em seguida, um arredondamento para o inteiro inferior é feito, resultando em um problema residual. Para resolução deste problema, abandonamos novamente a condição de integralidade e utilizamos a técnica de geração de colunas impondo agora padrões de corte 2-estágios e restritos. O arredondamento é realizado, resultando em um novo problema residual, que será tratado da mesma forma. Este procedimento é repetido até que o arredondamento\' resulte somente em freqüências nulas. Por fim, padrões restritos são utilizados até toda a demanda restante ser atendida. Os resultados dos testes computacionais obtidos com a implementação deste método são apresentados, onde foram observadas fortes indicações da propriedade M1RUP ser também válida para problemas de corte bidimensional 2-estágios.
publishDate 1999
dc.date.none.fl_str_mv 1999-05-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-165206/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06032018-165206/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256761856163840